In-Plane Free Vibrations of Curved Beams by Rayleigh-Ritz Method

Author(s):  
Shu-dong Ding ◽  
Jing-hui Wu ◽  
Long-tao Xie ◽  
Yang-yang Zhang ◽  
Rong-xing Wu ◽  
...  
2005 ◽  
Vol 72 (5) ◽  
pp. 797-800 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. Comparisons are made between the frequencies and the corresponding mode shapes of the conical shells from the authors' former analysis with bottom edges parallel to the axial direction and the present analysis with the edges normal to shell midsurfaces.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Baran Bozyigit

PurposeThis study aims to obtain earthquake responses of linear-elastic multi-span arch-frames by using exact curved beam formulations. For this purpose, the dynamic stiffness method (DSM) which uses exact mode shapes is applied to a three-span arch-frame considering axial extensibility, shear deformation and rotational inertia for both columns and curved beams. Using exact free vibration properties obtained from the DSM approach, the arch-frame model is simplified into an equivalent single degree of freedom (SDOF) system to perform earthquake response analysis.Design/methodology/approachThe dynamic stiffness formulations of curved beams for free vibrations are validated by using the experimental data in the literature. The free vibrations of the arch-frame model are investigated for various span lengths, opening angle and column dimensions to observe their effects on the dynamic behaviour. The calculated natural frequencies via the DSM are presented in comparison with the results of the finite element method (FEM). The mode shapes are presented. The earthquake responses are calculated from the modal equation by using Runge-Kutta algorithm.FindingsThe displacement, base shear, acceleration and internal force time-histories that are obtained from the proposed approach are compared to the results of the finite element approach where a very good agreement is observed. For various span length, opening angle and column dimension values, the displacement and base shear time-histories of the arch-frame are presented. The results show that the proposed approach can be used as an effective tool to calculate earthquake responses of frame structures having curved beam elements.Originality/valueThe earthquake response of arch-frames consisting of curved beams and straight columns using exact formulations is obtained for the first time according to the best of the author’s knowledge. The DSM, which uses exact mode shapes and provides accurate free vibration analysis results considering each structural members as one element, is applied. The complicated structural system is simplified into an equivalent SDOF system using exact mode shapes obtained from the DSM and earthquake responses are calculated by solving the modal equation. The proposed approach is an important alternative to classical FEM for earthquake response analysis of frame structures having curved members.


Author(s):  
S. Bashmal ◽  
R. Bhat ◽  
S. Rakheja

In-plane free vibrations of an isotropic, elastic annular disk constrained at some points on the inner and outer boundaries are investigated. The presented study is relevant to various practical problems including disks clamped by bolts along the inner and outer edges or the railway wheel vibrations. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. The boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to realize clamped conditions at discrete points. The frequency parameters for different point constraint conditions are evaluated and compared with those computed from a finite element model to demonstrate the validity of the proposed method. The computed mode shapes are presented for a disk with different point constraints at the inner and outer boundaries to demonstrate the free in-plane vibration behavior of the disk. Results show that addition of point supports causes some of the modes to split into two different frequencies with different mode shapes. The effects of different orientations of multiple point supports on the frequency parameters and mode shapes are also discussed.


2011 ◽  
Vol 18 (4) ◽  
pp. 627-640 ◽  
Author(s):  
S. Bashmal ◽  
R. Bhat ◽  
S. Rakheja

In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to account for different boundary conditions. The frequency parameters for different boundary conditions of the outer edge are evaluated and compared with those available in the published studies and computed from a finite element model. The computed mode shapes are presented for a disk clamped at the inner edge and point supported at the outer edge to illustrate the free in-plane vibration behavior of the disk. Results show that addition of point clamped support causes some of the higher modes to split into two different frequencies with different mode shapes.


2015 ◽  
Vol 82 (11) ◽  
Author(s):  
François Robert Hogan ◽  
James Richard Forbes

The motion equations of a rolling flexible circular ring are derived using a Lagrangian formulation. The in-plane flexural and out-of-plane twist-bending free vibrations are modeled using the Rayleigh–Ritz method. The motion equations of a flexible circular ring translating and rotating in space are first developed and then constrained to roll on a flat surface by introducing Lagrange multipliers. The motion equations developed capture the nonholonomic nature of the circular ring rolling without slip on a flat surface. Numerical simulations are performed to validate the dynamic model developed and to investigate the effect of the flexibility of the circular ring on its trajectory. The vibrations of the circular ring are observed to impact the ring's motion.


2015 ◽  
Vol 757 ◽  
pp. 121-125
Author(s):  
Wei Ning ◽  
Feng Sheng Peng ◽  
Nan Wang ◽  
Dong Sheng Zhang

The free vibrations of the stiffened hollow conical shells with different variable thickness distribution modes are investigated in detail in the context of Donnel-Mushtari conical shell theory. Two sets of boundary conditions have been considered. The algebraic energy equations of the conical shell and the stiffeners are established separately. The Rayleigh-Ritz method is used to equate maximum strain energy to maximum kinetic energy which leads to a standard linear eigenvalue problem. Numerical results are presented graphically for different geometric parameters. The parametric study reveals the characteristic behavior which is useful in selecting the shell thickness distribution modes and the stiffener type. The comparison between the present results and those of finite element method shows that the present results agree well with those of finite element method.


Sign in / Sign up

Export Citation Format

Share Document