Single Line-to-Ground Fault Special Protection Scheme for Integrated WindFarm Transmission Line Using Data Mining

Author(s):  
Osaji Emmanuel ◽  
Mohammad Lutfi Othman ◽  
Hashim Hizam ◽  
Muhammad M. Othman ◽  
Okeke Chidiebere A ◽  
...  
Author(s):  
M. Kiruthika ◽  
Bindu S.

Distance relay is one of the most important protection element of a transmission line used in protection schemes. Relay may malfunction if it is not able to distinguish faults from system stressed conditions. This work mainly focusses on enhancing the performance of the distance relay in a secured manner based on data mining approach which uses two phases of classification. Level 1 classifier identifies the system conditions like normal, fault, and power swing and level 2 classifier gets initiated when there is a power swing and distinguishes between the persistence of power swing condition and a three-phase fault. In both the phases, the protection scheme in the respective zone where the fault occurred gets activated. The proposed methodology is tested for an IEEE 9-bus system wherein the data is collected from phasor measurement units placed in optimal locations. Optimal PMU placement is economical since it overcomes issues like cost, communication infrastructure issues, maintenance and complexity. The results proved that the proposed method is effective with good efficiency and higher accuracy with less number of PMUs.


Author(s):  
Harshal Vilas Patil

Now-a-days the demand of electricity or power areincreases day by day this results to transmits more power byIncreasing the transmission line capacity from one place to theother place. But during the transmission some faults areoccurred in the system, such as L-L fault (line to line), 1L-Gfault (single line to ground) and 2L-G fault (double line toground). These faults affect the power system equipmentswhich are connected to it. The main aim of this paper is tostudy or analysis of faults and also identifies the effect of thefault in transmission line along with bus system which isconnected to transmission line. Mainly the major faults in longtransmission lines is (L-G) single line to ground fault which areharmful to the electrical equipment. A proposed model intransmission line is simulated in MATLAB software to analysisand identified the faults. Fault block was taken from the sim-power system block library. The whole modeling andsimulation of different operating and different conditions offault on transmission line, their faults are L-G fault, 2L-Gfault, 3L-G fault and three line short circuit of the proposedwork is presented in this paper.


Author(s):  
Boniface Onyemaechi Anyaka ◽  
Innocent Onyebuchi Ozioko

Fault analysis is the process of determining the magnitude of fault voltage and current during the occurrence of different types of fault in electrical power system. Transmission line fault analysis is usually done for both symmetrical and unsymmetrical faults. Symmetrical faults are called three-phase balance fault while unsymmetrical faults include: single line-to-ground, line-to-line, and double line-to-ground faults. In this research, bus impedance matrix method for fault analysis is presented. Bus impedance matrix approach has several advantages over Thevenin’s equivalent method and other conventional approaches. This is because the off-diagonal elements represent the transfer impedance of the power system network and helps in calculating the branch fault currents during a fault. Analytical and simulation approaches on a single line-to-ground fault on 3-bus power system network under bolted fault condition were used for the study. Both methods were compared and result showed negligible deviation of 0.02% on the average. The fault currents under bolted condition for the single line-to-ground fault were found to be 4. 7244p.u while the bus voltage is 0. 4095p.u for buses 1 and 2 respectively and 0. 00p.u for bus 3 since the fault occurred at this bus. Therefore, there is no need of burdensomely connecting the entire three sequence network during fault analysis in electrical power system.


Author(s):  
Sujata Mulik

Agriculture sector in India is facing rigorous problem to maximize crop productivity. More than 60 percent of the crop still depends on climatic factors like rainfall, temperature, humidity. This paper discusses the use of various Data Mining applications in agriculture sector. Data Mining is used to solve various problems in agriculture sector. It can be used it to solve yield prediction.  The problem of yield prediction is a major problem that remains to be solved based on available data. Data mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. In this paper we have focused on predicting crop yield productivity of kharif & Rabi Crops. 


Sign in / Sign up

Export Citation Format

Share Document