FPGA implementation of large-scale matrix inversion using single, double and custom floating-point precision

Author(s):  
J. Arias-Garcia ◽  
Carlos H. Llanos ◽  
M. Ayala-Rincon ◽  
R. P. Jacobi
IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 2166-2176 ◽  
Author(s):  
Jun Liu ◽  
Yang Liang ◽  
Nirwan Ansari

Information ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 523
Author(s):  
HouZhen Wang ◽  
Yan Guo ◽  
HuanGuo Zhang

Ultra-large-scale matrix inversion has been applied as the fundamental operation of numerous domains, owing to the growth of big data and matrix applications. Using cryptography as an example, the solution of ultra-large-scale linear equations over finite fields is important in many cryptanalysis schemes. However, inverting matrices of extremely high order, such as in millions, is challenging; nonetheless, the need has become increasingly urgent. Hence, we propose a parallel distributed block recursive computing method that can process matrices at a significantly increased scale, based on Strassen’s method; furthermore, we describe the related well-designed algorithm herein. Additionally, the experimental results based on comparison show the efficiency and the superiority of our method. Using our method, up to 140,000 dimensions can be processed in a supercomputing center.


Author(s):  
Alice Cortinovis ◽  
Daniel Kressner

AbstractRandomized trace estimation is a popular and well-studied technique that approximates the trace of a large-scale matrix B by computing the average of $$x^T Bx$$ x T B x for many samples of a random vector X. Often, B is symmetric positive definite (SPD) but a number of applications give rise to indefinite B. Most notably, this is the case for log-determinant estimation, a task that features prominently in statistical learning, for instance in maximum likelihood estimation for Gaussian process regression. The analysis of randomized trace estimates, including tail bounds, has mostly focused on the SPD case. In this work, we derive new tail bounds for randomized trace estimates applied to indefinite B with Rademacher or Gaussian random vectors. These bounds significantly improve existing results for indefinite B, reducing the number of required samples by a factor n or even more, where n is the size of B. Even for an SPD matrix, our work improves an existing result by Roosta-Khorasani and Ascher (Found Comput Math, 15(5):1187–1212, 2015) for Rademacher vectors. This work also analyzes the combination of randomized trace estimates with the Lanczos method for approximating the trace of f(B). Particular attention is paid to the matrix logarithm, which is needed for log-determinant estimation. We improve and extend an existing result, to not only cover Rademacher but also Gaussian random vectors.


Sign in / Sign up

Export Citation Format

Share Document