C-band FMCW radar analog-front-end for SAR/ISAR applications

Author(s):  
K. Ndini ◽  
D. Gromek ◽  
M. Wielgo ◽  
P. Samczynski ◽  
M. Malanowski
2016 ◽  
Vol 8 (6) ◽  
pp. 845-854
Author(s):  
Damian Gromek ◽  
Piotr Samczyński ◽  
Maciej Wielgo ◽  
Mateusz Malanowski ◽  
Krzysztof Kulpa

This paper presents the design, implementation, and validation tests of a C-band analog-front-end (AFE) for the frequency modulated continuous wave (FMCW) radar. The system was designed to be used in various radar applications, including short rage mode, synthetic aperture radar (SAR) and moving target indication (MTI) mode. The AFE presented here was based on commercial off-the-shelf radio frequency components, and designed as a homodyne system, so the final applications were based on the FMCW radar. Validation tests and experiments were carried out in the laboratory and in open-air environments. The authors present tests of the AFE, including MTI and SAR trials, conducted using a ground moving platform (a car) and an airborne platform (a small aircraft). The results are discussed with the prospect of future work and further improvements in mind.


Author(s):  
Raja Krishnamoorthy ◽  
E. Kavitha ◽  
V. Beslin Geo ◽  
K.S.R. Radhika ◽  
C. Bharatiraja

Author(s):  
Zu-Jia Lo ◽  
Bipasha Nath ◽  
Yuan-Chuan Wang ◽  
Yun-Jie Huang ◽  
Hui-Chun Huang ◽  
...  

Author(s):  
Antonio Vincenzo Radogna ◽  
Simonetta Capone ◽  
Luca Francioso ◽  
Pietro Aleardo Siciliano ◽  
Stefano D'Amico

2013 ◽  
Vol 475-476 ◽  
pp. 1633-1637
Author(s):  
Seung Yong Bae ◽  
Jong Do Lee ◽  
Eun Ju Choe ◽  
Gil Cho Ahn

This paper presents a low distortion analog front-end (AFE) circuit to process electret microphone output signal. A source follower is employed for the input buffer to interface electret microphone directly to the IC with level shifting. A single-ended to differential converter with output common-mode control is presented to compensate the common-mode variation resulted from gate to source voltage variation in the source follower. A replica stage is adopted to control the output bias voltage of the single-ended to differential converter. The prototype AFE circuit fabricated in a 0.35μm CMOS technology achieves 68.2dB peak SNDR and 79.9dB SFDR over an audio signal bandwidth of 20kHz with 2.5V supply while consuming 1.05mW.


Sign in / Sign up

Export Citation Format

Share Document