A genetic algorithm PSS and AVR controller for electrical power system stability

Author(s):  
A. Kahouli ◽  
T. Guesmi ◽  
H. Hadj Abdallah ◽  
A. Ouali
2014 ◽  
Vol 1016 ◽  
pp. 441-445
Author(s):  
Wenl Li Lin ◽  
Zhi Gang Liu

Instability phenomena such as bus voltage fluctuations are occurred in serial MPPT(Maximum Power Point Tracking) electrical power system. To study the system stability, the system equivalent circuit models were built based on a serial MPPT unregulated bus electrical power system topology for space application. The small-signal equivalent analysis method and solving eigenvalues of state space equations method were adopted to perform stability analysis in two-domain control modes separately, from which the key conclusions were obtained.


Author(s):  
Ramnarayan Patel ◽  
Vasundhara Mahajan ◽  
Vinay Pant

Power engineers are currently facing challenges to increase the power transfer capabilities of existing transmission system. Flexible AC Transmission system (FACTS) controllers can balance the power flow and thereby use the existing power system network most efficiently. Because of their fast response, FACTS controllers can also improve the stability of an electrical power system by helping critically disturbed generators to give away the excess energy gained through the acceleration during fault. Thyristor controlled series compensator (TCSC) is an important device in FACTS family, and is widely recognized as an effective and economical means to solve the power system stability problem. TCSC is used as series compensator in transmission system. In the present work a TCSC controller is designed and tested over a single machine infinite bus (SMIB) as well as a multi-machine power system. Detailed simulation studies are carried out with MATLAB/SIMULINK environment and the effect of the TCSC parameter variations over the system stability is studied.


2015 ◽  
Vol 793 ◽  
pp. 29-33 ◽  
Author(s):  
M. Irwanto ◽  
Norfadilah ◽  
N. Gomesh ◽  
M. Irwan ◽  
M.R. Mamat

Power system stability means the ability to develop restoring forces equal to or greater than the disturbing forces to maintain the state of equilibrium. Successful operation of a power system depends largely on providing reliable and uninterrupted service to the loads by the power utility. The stability of the power system is concerned with the behavior of the synchronous machines after they have been disturbed. If the disturbance does not involve any net change in power, the machines should return to their original state. Due to small disturbances, power system experience these poorly damped low frequency oscillations. The dynamic stability of power systems are also affected by these low frequency oscillations. This paper presents to analyze and obtain the optimum gain for damping oscillation in SMIB by using Riccati matrix method to improve dynamic power system stability. The result shows that with suitable gain which is act as a stabilizer that taken from Riccati matrix, the oscillations of rotor speed and rotor angle can be well damped and hence the system stability is enhanced.


Sign in / Sign up

Export Citation Format

Share Document