Modelling of TCSC Controller for Transient Stability Enhancement

Author(s):  
Ramnarayan Patel ◽  
Vasundhara Mahajan ◽  
Vinay Pant

Power engineers are currently facing challenges to increase the power transfer capabilities of existing transmission system. Flexible AC Transmission system (FACTS) controllers can balance the power flow and thereby use the existing power system network most efficiently. Because of their fast response, FACTS controllers can also improve the stability of an electrical power system by helping critically disturbed generators to give away the excess energy gained through the acceleration during fault. Thyristor controlled series compensator (TCSC) is an important device in FACTS family, and is widely recognized as an effective and economical means to solve the power system stability problem. TCSC is used as series compensator in transmission system. In the present work a TCSC controller is designed and tested over a single machine infinite bus (SMIB) as well as a multi-machine power system. Detailed simulation studies are carried out with MATLAB/SIMULINK environment and the effect of the TCSC parameter variations over the system stability is studied.

2018 ◽  
Vol 7 (3) ◽  
pp. 1656 ◽  
Author(s):  
Nabil A. Hussein ◽  
Ayamn A. Eisa ◽  
Hassan M. Mahmoud ◽  
Safy A. Shehata ◽  
El-Saeed A. Othman

Flexible AC Transmission Systems (FACTS) have been proposed in the late 1980s to meet and provide the electrical power system requirements. FACTS are used to control the power flow and to improve the power system stability. Interline power flow controller (IPFC) is a versatile device in the FACTS family of controllers and one of its latest generations which has the ability to simultaneously control the power flow in two or multiple transmission lines. This paper is tackling the IPFC performance in power systems; it aims to discuss the availability to define a known scenario for the IPFC performance in different systems. An introduction supported with brief review on IPFC, IPFC principle of operation and IPFC mathematical model are also introduced. IEEE 14-bus and 30-bus systems have chosen as a test power systems to support the behavior study of power system equipped with IPFC device. Three different locations have chosen to give variety of system configurations to give effective performance analysis.  


2014 ◽  
Vol 622 ◽  
pp. 111-120
Author(s):  
Ananthavel Saraswathi ◽  
S. Sutha

Nowadays in the restructured scenario, the main challenging objective of the modern power system is to avoid blackouts and provide uninterrupted quality power supply with dynamic response during emergency to improve power system security and stability. In this sense the convertible static compensator (CSC) that is the Generalized Inter line power flow controller (GIPFC), can control and optimize power flow in multi-line transmission system instead of controlling single line like its forerunner FACTS (Flexible AC Transmission System) controller. By adding a STATCOM (Static synchronous Shunt Converter) at the front end of the test power system and connecting to the common DC link of the IPFC, it is possible to bring the power factor to higher level and harmonics to the lower level and this arrangement is popularly known as Generalized Inter line power flow controller (GIPFC). In this paper a new concept of GIPFC based on incorporating a voltage source converter with zero sequence injection SPWM technique is presented for reinforcement of system stability margin. A detailed circuit model of modified GIPFC is developed and its performance is validated for a standard test system. Simulation is done using MATLAB Simulink.Index Terms—Convertible static controller, Flexible AC Transmission System (FACTS), Generalized Interline Power Flow Controller (GIPFC),STATCOM, SSSC, Reactive power compensation.


2014 ◽  
Vol 986-987 ◽  
pp. 1286-1290
Author(s):  
Jin Li ◽  
Ya Min Pi ◽  
Hui Yuan Yang

In this paper, the series converters of Distributed Power Flow Controller are the main object of study. Its mechanism of suppressing power system oscillations is studied by theoretical analysis and formula derivation, which relies on a single-machine infinite-bus power system, installed the series converters. Then based on the mechanism, adopting the classic PI control and the damping controller, designed the transient stability control loop for the series converters. Finally, simulations performed by PSCAD/EMTDC, the results show that DPFC device can effectively suppress oscillation and improve system stability.


2011 ◽  
Vol 403-408 ◽  
pp. 4926-4933
Author(s):  
Laxmidhar Sahu ◽  
Jose. P. Therattil ◽  
P. C. Panda

The continuous change in power demand and supply altered the power flow patterns in transmission networks in such a way that some of the corridors are lightly loaded and some of the corridors get over loaded. This raises serious challenge in operating the power system in secure and reliable manner. To cope with this problem Flexible AC Transmission Systems (FACTS) is used. It plays a very important role in improving the power system operating performance. In this paper load flow models for STATCOM and SVC have been developed. Power flow study of a five bus system is carried out with and without FACTS controllers. Results of the power flow studies are obtained with MATLAB programming.


2013 ◽  
Vol 278-280 ◽  
pp. 1314-1317
Author(s):  
Li Xiao

Proposed one kind of improvement artificial immunization algorithm calculates the electrical power system most superior tidal current, this algorithm maintained the basic immunity algorithm comprehensive search ability, also the concept which is apart from through the introduction vector causes the immunity algorithm theoretically to guarantee the understanding the multiplicity. Through the IEEE-30pitch point system computed result indicated this algorithm is feasible. And so on compares with the heredity algorithm, this algorithm overall situation search ability strong, the convergence rate is quick.


2020 ◽  
Vol 5 (2) ◽  
pp. 35-37
Author(s):  
Vipin Kumar Pandey ◽  
Dr. Malay S Das ◽  
Dr. Anula Khare

Due to increase in population and industrial growth, insufficient energy resources to generate or transmit the power in power system, increase in load causes power demand in the electrical power system. These power demand leads to voltage instability, increase the losses, reduces the power transfer capability and stability of the power system. To overcome this stability problem FACTS devices are optimally located in the power system to examine the stability of the system. To locate the FACTS devices different optimization algorithms are used in order to improve the stability of the electrical power system.


Now days’ electrical power requirement has enlarged expanding as expansion & restructuring of electrical power system (PS) for generation & transmission in power sector is critically limited due to current resources & environmental circumstances. As outcome, approximately of corridors of power transmission overhead lines are greatly loaded & congested. Also major issue of power system voltage stability becomes power transfer restricted and capability issue. A Modern power electronics technology FATCS considered device Static Synchronous Series Compensator (SSSC) is VSC demanded series FACTS equipment. Unified power flow controller (UPFC) is to manage power flow (PF), voltage magnitude & phase angle. In this research paper suggested to maintain voltage magnitude as well as PF of faulty lines. The consequence of mutation of PS parameters like voltage, phase angle, active power, reactive power, & overall power factor with & without SSSC & UPFC have also incorporated. Assessment of PS safety is essential in society to expand customs to sustain system functions when one or more components fail. A PS is "secure" when it can defy loss of one or more ingredients & still go on working without major problems. The Contingency event investigation technique is taken to identify electrical node PF in faulty transmission lines (TL). The Performance of PS has been tested on IEEE 14-Bus System.


Sign in / Sign up

Export Citation Format

Share Document