Drug Classification using Machine Learning and Interpretability

Author(s):  
Dhrumil Vinil Gala ◽  
Vaibhav Bharat Gandhi ◽  
Vedant Amit Gandhi ◽  
Vinaya Sawant
2017 ◽  
Vol 9 (5) ◽  
pp. 1560-1572 ◽  
Author(s):  
Eugene K. Lee ◽  
David D. Tran ◽  
Wendy Keung ◽  
Patrick Chan ◽  
Gabriel Wong ◽  
...  

Author(s):  
Pooja Thakkar

Abstract: The focus of this study is on drug categorization utilising Machine Learning models, as well as interpretability utilizing LIME and SHAP to get a thorough understanding of the ML models. To do this, the researchers used machine learning models such as random forest, decision tree, and logistic regression to classify drugs. Then, using LIME and SHAP, they determined if these models were interpretable, which allowed them to better understand their results. It may be stated at the conclusion of this paper that LIME and SHAP can be utilised to get insight into a Machine Learning model and determine which attribute is accountable for the divergence in the outcomes. According to the LIME and SHAP results, it is also discovered that Random Forest and Decision Tree ML models are the best models to employ for drug classification, with Na to K and BP being the most significant characteristics for drug classification. Keywords: Machine Learning, Back-box models, LIME, SHAP, Decision Tree


Author(s):  
Songtao Huang ◽  
Yanrui Ding

Background: Drug repositioning is an important subject in drug-disease research. In the past, most studies simply used drug descriptors as the feature vector to classify drugs or targets, or used qualitative data about drug-target or drug-disease to predict drug-target interactions. These data provide limited information for drug repositioning. Objective: Considering both drugs and targets and constructing quantitative drug-target interaction descriptors as a method of drug characteristics are of great significance to the study of drug repositioning. Methods: Taking anticancer and anti-inflammatory drugs as research objects, the interaction sites between drugs and targets were determined by molecular docking. Sixty-seven drug-target interaction descriptors were calculated to describe the drug-target interactions, and 22 important descriptors were screened for drug classification by SVM, LightGBM and MLP. Results: The accuracy of SVM, LightGBM and MLP reached 93.29%, 92.68% and 94.51%, their Matthews correlation coefficients reached 0.852, 0.840 and 0.882, and their areas under the ROC curve reached 0.977, 0.969 and 0.968, respectively. Conclusion: Using drug-target interaction descriptors to build machine learning models can obtain better results for drug classification. Number of atom pairs, force field, hydrophobic interactions and bSASA are the four types of key features for the classification of anticancer and anti-inflammatory drugs.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document