Drug Classification using Black-box models and Interpretability

Author(s):  
Pooja Thakkar

Abstract: The focus of this study is on drug categorization utilising Machine Learning models, as well as interpretability utilizing LIME and SHAP to get a thorough understanding of the ML models. To do this, the researchers used machine learning models such as random forest, decision tree, and logistic regression to classify drugs. Then, using LIME and SHAP, they determined if these models were interpretable, which allowed them to better understand their results. It may be stated at the conclusion of this paper that LIME and SHAP can be utilised to get insight into a Machine Learning model and determine which attribute is accountable for the divergence in the outcomes. According to the LIME and SHAP results, it is also discovered that Random Forest and Decision Tree ML models are the best models to employ for drug classification, with Na to K and BP being the most significant characteristics for drug classification. Keywords: Machine Learning, Back-box models, LIME, SHAP, Decision Tree

2019 ◽  
Author(s):  
Thomas M. Kaiser ◽  
Pieter B. Burger

Machine learning continues to make strident advances in the prediction of desired properties concerning drug development. Problematically, the efficacy of machine learning in these arenas is reliant upon highly accurate and abundant data. These two limitations, high accuracy and abundance, are often taken together; however, insight into the dataset accuracy limitation of contemporary machine learning algorithms may yield insight into whether non-bench experimental sources of data may be used to generate useful machine learning models where there is a paucity of experimental data. We took highly accurate data across six kinase types, one GPCR, one polymerase, a human protease, and HIV protease, and intentionally introduced error at varying population proportions in the datasets for each target. With the generated error in the data, we explored how the retrospective accuracy of a Naïve Bayes Network, a Random Forest Model, and a Probabilistic Neural Network model decayed as a function of error. Additionally, we explored the ability of a training dataset with an error profile resembling that produced by the Free Energy Perturbation method (FEP+) to generate machine learning models with useful retrospective capabilities. The categorical error tolerance was quite high for a Naïve Bayes Network algorithm averaging 39% error in the training set required to lose predictivity on the test set. Additionally, a Random Forest tolerated a significant degree of categorical error introduced into the training set with an average error of 29% required to lose predictivity. However, we found the Probabilistic Neural Network algorithm did not tolerate as much categorical error requiring an average of 20% error to lose predictivity. Finally, we found that a Naïve Bayes Network and a Random Forest could both use datasets with an error profile resembling that of FEP+. This work demonstrates that computational methods of known error distribution like FEP+ may be useful in generating machine learning models not based on extensive and expensive in vitro-generated datasets.


2021 ◽  
Vol 14 (3) ◽  
pp. 138
Author(s):  
Fisnik Doko ◽  
Slobodan Kalajdziski ◽  
Igor Mishkovski

Data science and machine-learning techniques help banks to optimize enterprise operations, enhance risk analyses and gain competitive advantage. There is a vast amount of research in credit risk, but to our knowledge, none of them uses credit registry as a data source to model the probability of default for individual clients. The goal of this paper is to evaluate different machine-learning models to create accurate model for credit risk assessment using the data from the real credit registry dataset of the Central Bank of Republic of North Macedonia. We strongly believe that the model developed in this research will be an additional source of valuable information to commercial banks, by leveraging historical data for all the population of the country in all the commercial banks. Thus, in this research, we compare five machine-learning models to classify credit risk data, i.e., logistic regression, decision tree, random forest, support vector machines (SVM) and neural network. We evaluate the five models using different machine-learning metrics, and we propose a model based on credit registry data from the central bank with detailed methodology that can predict the credit risk based on credit history of the population in the country. Our results show that the best accuracy is achieved by using decision tree performing on imbalanced data with and without scaling, followed by random forest and linear regression.


Genus ◽  
2020 ◽  
Vol 76 (1) ◽  
Author(s):  
Fikrewold H. Bitew ◽  
Samuel H. Nyarko ◽  
Lloyd Potter ◽  
Corey S. Sparks

Abstract There is a dearth of literature on the use of machine learning models to predict important under-five mortality risks in Ethiopia. In this study, we showed spatial variations of under-five mortality and used machine learning models to predict its important sociodemographic determinants in Ethiopia. The study data were drawn from the 2016 Ethiopian Demographic and Health Survey. We used three machine learning models such as random forests, logistic regression, and K-nearest neighbors as well as one traditional logistic regression model to predict under-five mortality determinants. For each machine learning model, measures of model accuracy and receiver operating characteristic curves were used to evaluate the predictive power of each model. The descriptive results show that there are considerable regional variations in under-five mortality rates in Ethiopia. The under-five mortality prediction ability was found to be between 46.3 and 67.2% for the models considered, with the random forest model (67.2%) showing the best performance. The best predictive model shows that household size, time to the source of water, breastfeeding status, number of births in the preceding 5 years, sex of a child, birth intervals, antenatal care, birth order, type of water source, and mother’s body mass index play an important role in under-five mortality levels in Ethiopia. The random forest machine learning model produces a better predictive power for estimating under-five mortality risk factors and may help to improve policy decision-making in this regard. Childhood survival chances can be improved considerably by using these important factors to inform relevant policies.


Author(s):  
Pedro Silva ◽  
Leon T. Cao ◽  
Wayne B. Hayes

Automated machine classifications of galaxies are necessary because the size of upcoming surveys will overwhelm human volunteers. We improve upon existing machine classification methods by adding the output of SpArcFiRe to the inputs of a machine learning model. We use the human classifications from Galaxy Zoo 1 (GZ1) to train a random forest of decision trees to reproduce the human vote distributions of the Spiral class. We prefer the random forest model over other black box models like neural networks because it allows us to trace post hoc the precise reasoning behind the classification of each galaxy. We find that, across a sample of 470,000 Sloan galaxies that are large enough that details could be seen if they were there, the combination of SpArcFiRe outputs with existing SDSS features provides a better machine classification than either one alone on comparison to Galaxy Zoo 1. We suggest that adding SpArcFiRe outputs as features to any machine learning algorithm will likely improve its performance.


2021 ◽  
Author(s):  
Najlaa Maaroof ◽  
Antonio Moreno ◽  
Mohammed Jabreel ◽  
Aida Valls

Despite the broad adoption of Machine Learning models in many domains, they remain mostly black boxes. There is a pressing need to ensure Machine Learning models that are interpretable, so that designers and users can understand the reasons behind their predictions. In this work, we propose a new method called C-LORE-F to explain the decisions of fuzzy-based black box models. This new method uses some contextual information about the attributes as well as the knowledge of the fuzzy sets associated to the linguistic labels of the fuzzy attributes to provide actionable explanations. The experimental results on three datasets reveal the effectiveness of C-LORE-F when compared with the most relevant related works.


2021 ◽  
Author(s):  
Larissa Asito ◽  
Hélcio Pereira ◽  
Marcello Nogueira-Barbosa ◽  
Renato Tinós

We propose a computer-aided diagnosis system based on convolutional neural networks (CNNs) for the identification of osteosarcoma on bone radiographs. The CNN should indicate regions of the image that may contain tumors. In order to indicate these regions on the image, we propose to split the image in windows and individually classify them by using a CNN. Techniques for pre-processing, such as window exclusion and labeling, are proposed. Two CNNs are compared in the proposed system. The first one is trained from scratch, while the second one is a pre-trained CNN (VGG16). The CNNs are compared to four machine learning models that use features extracted from the image windows as inputs: multilayer perceptron (MLP), decision tree, random forest, and MLP with feature selection. In the experiments, the best performance was obtained by the pre-trained CNN.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2115 ◽  
Author(s):  
Thomas M. Kaiser ◽  
Pieter B. Burger

Machine learning continues to make strident advances in the prediction of desired properties concerning drug development. Problematically, the efficacy of machine learning in these arenas is reliant upon highly accurate and abundant data. These two limitations, high accuracy and abundance, are often taken together; however, insight into the dataset accuracy limitation of contemporary machine learning algorithms may yield insight into whether non-bench experimental sources of data may be used to generate useful machine learning models where there is a paucity of experimental data. We took highly accurate data across six kinase types, one GPCR, one polymerase, a human protease, and HIV protease, and intentionally introduced error at varying population proportions in the datasets for each target. With the generated error in the data, we explored how the retrospective accuracy of a Naïve Bayes Network, a Random Forest Model, and a Probabilistic Neural Network model decayed as a function of error. Additionally, we explored the ability of a training dataset with an error profile resembling that produced by the Free Energy Perturbation method (FEP+) to generate machine learning models with useful retrospective capabilities. The categorical error tolerance was quite high for a Naïve Bayes Network algorithm averaging 39% error in the training set required to lose predictivity on the test set. Additionally, a Random Forest tolerated a significant degree of categorical error introduced into the training set with an average error of 29% required to lose predictivity. However, we found the Probabilistic Neural Network algorithm did not tolerate as much categorical error requiring an average of 20% error to lose predictivity. Finally, we found that a Naïve Bayes Network and a Random Forest could both use datasets with an error profile resembling that of FEP+. This work demonstrates that computational methods of known error distribution like FEP+ may be useful in generating machine learning models not based on extensive and expensive in vitro-generated datasets.


Author(s):  
Pedro Silva ◽  
Leon T. Cao ◽  
Wayne B. Hayes

Automated machine classifications of galaxies are necessary because the size of upcoming surveys will overwhelm human volunteers. We improve upon existing machine classification methods by adding the output of SpArcFiRe to the inputs of a machine learning model. We use the human classifications from Galaxy Zoo 1 (GZ1) to train a random forest of decision trees to reproduce the human vote distributions of the Spiral class. We prefer the random forest model over other black box models like neural networks because it allows us to trace post hoc the precise reasoning behind the classification of each galaxy. We find that, across a sample of 470,000 Sloan galaxies that are large enough that details could be seen if they were there, the combination of SpArcFiRe outputs with existing SDSS features provides a better machine classification than either one alone on comparison to Galaxy Zoo 1. We suggest that adding SpArcFiRe outputs as features to any machine learning algorithm will likely improve its performance.


Author(s):  
Farrikh Alzami ◽  
Erika Devi Udayanti ◽  
Dwi Puji Prabowo ◽  
Rama Aria Megantara

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.


2021 ◽  
Author(s):  
Sebastião Santos ◽  
Beatriz Silveira ◽  
Vinicius Durelli ◽  
Rafael Durelli ◽  
Simone Souza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document