scholarly journals Capturability of a Sliding-Mode Guidance Law With Finite-Time Convergence

2020 ◽  
Vol 56 (3) ◽  
pp. 2312-2325
Author(s):  
Ke-Bo Li ◽  
Hyo-Sang Shin ◽  
Antonios Tsourdos
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Kuanqiao Zhang ◽  
Suochang Yang

Aiming at the requirement that some missiles need to meet certain impact angles when attacking targets, we consider the second-order dynamic characteristics of autopilot, thereby proposing a second-order sliding mode guidance law with impact angle constraint. Firstly, based on the terminal sliding mode control, we design a fast nonsingular terminal sliding mode guidance law with impact angle constraint. Based on the second-order sliding mode control, a second-order sliding mode guidance law with impact angle constraint is proposed. We have proved its finite time convergence characteristics and presented the specific convergence time expression. Subsequently, the dynamic characteristics of the autopilot are approximated to the second-order link. Combined with the dynamic surface control theory, we proposed a second-order sliding mode guidance law considering the second-order dynamic characteristics of the autopilot and proved its finite-time convergence characteristics. Finally, the effectiveness and superiority of the proposed guidance law are verified by comparative simulation experiments.


Author(s):  
Pingping Qu ◽  
Chuntao Shao ◽  
Di Zhou

A guidance law with finite time convergence is designed using the sliding mode control method and finite time convergence control theory, accounting for the missile autopilot as second-order dynamics. The high-order derivatives of the line of sight (LOS) angle are avoided in the expression of guidance law such that it can be implemented in practical applications. The designed guidance law is effective in compensating the bad influence of the autopilot dynamics on guidance accuracy. In simulations of intercepting a non maneuvering target or a maneuvering target, respectively, the designed guidance law is compared with the adaptive sliding mode guidance (ASMG) law in the presence of missile autopilot lag. Simulation results show that the designed guidance law is able to guide a missile to accurately intercept a nonmaneuvering target or a maneuvering target with finite time, even if it escapes in a great and fast maneuver and the autopilot has a relatively large lag.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fang Yang ◽  
Kuanqiao Zhang ◽  
Lei Yu

A nonsingular fast terminal sliding mode guidance law with an impact angle constraint is proposed to solve the problem of missile guidance accuracy and impact angle constraint for maneuvering targets. Aiming at the singularity problem of the terminal sliding mode, a fast terminal sliding mode surface with finite-time convergence and impact angle constraint is designed based on fixed-time convergence and piecewise sliding mode theory. To weaken chattering and suppress interference, a second-order sliding mode supertwisting algorithm is improved. By designing the parameter adaptive law, an adaptive smooth supertwisting algorithm is designed. This algorithm can effectively weaken chattering without knowing the upper bound information of interference, and it converges faster. Based on the proposed adaptive supertwisting algorithm and the sliding mode surface, a guidance law with the impact angle constraint is designed. The global finite-time convergence of the guidance law is proved by constructing the Lyapunov function. The simulation results verify the effectiveness of the proposed guidance law, and compared with the existing terminal sliding mode guidance laws, the proposed guidance law has higher guidance precision and angle constraint accuracy.


Sign in / Sign up

Export Citation Format

Share Document