GTD analysis of the near-field patterns of a prime-focus symmetric paraboloidal reflector antenna

1981 ◽  
Vol 29 (6) ◽  
pp. 959-961 ◽  
Author(s):  
M. Narasimhan ◽  
K. Prasad
2021 ◽  
Vol 118 (13) ◽  
pp. 131105
Author(s):  
Oshri Rabinovich ◽  
Ariel Epstein
Keyword(s):  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Zhai ◽  
Ding Xu ◽  
Yan Zhang

This paper presents a lightweight, cost-efficient, wideband, and high-gain 3D printed parabolic reflector antenna in the Ka-band. A 10 λ reflector is printed with polylactic acid- (PLA-) based material that is a biodegradable type of plastic, preferred in 3D printing. The reflecting surface is made up of multiple stacked layers of copper tape, thick enough to function as a reflecting surface (which is found 4 mm). A conical horn is used for the incident field. A center-fed method has been used to converge the energy in the broadside direction. The proposed antenna results measured a gain of 27.8 dBi, a side lobe level (SLL) of −22 dB, and a maximum of 61.2% aperture efficiency (at 30 GHz). A near-field analysis in terms of amplitude and phase has also been presented which authenticates the accurate spherical to planar wavefront transformation in the scattered field.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiaqi Han ◽  
Long Li ◽  
Shuncheng Tian ◽  
Xiangjin Ma ◽  
Qiang Feng ◽  
...  

This article presents a holographic metasurface antenna with stochastically distributed surface impedance, which produces randomly frequency-diverse radiation patterns. Low mutual coherence electric field patterns generated by the holographic metasurface antenna can cover the K-band from 18 to 26 GHz with 0.1 GHz intervals. By utilizing the frequency-diverse holographic metasurface (FDHM) antenna, we build a near-field microwave computational imaging system based on reflected signals in the frequency domain. A standard horn antenna is adopted to acquire frequency domain signals radiated from the proposed FDHM antenna. A detail imaging restoration process is presented, and the desired targets are correctly reconstructed using the 81 frequency-diverse patterns through full-wave simulation studies. Compressed sensing technique and iterative shrinkage/thresholding algorithms are applied for the imaging reconstruction. The achieved compressive ratio of this computational imaging system on the physical layer is 30:1.


2017 ◽  
Vol 50 (3) ◽  
pp. 701-711 ◽  
Author(s):  
Qi Zhong ◽  
Lars Melchior ◽  
Jichang Peng ◽  
Qiushi Huang ◽  
Zhanshan Wang ◽  
...  

Iterative phase retrieval has been used to reconstruct the near-field distribution behind tailored X-ray waveguide arrays, by inversion of the measured far-field pattern recorded under fully coherent conditions. It is thereby shown that multi-waveguide interference can be exploited to control the near-field distribution behind the waveguide exit. This can, for example, serve to create a secondary quasi-focal spot outside the waveguide structure. For this proof of concept, an array of seven planar Ni/C waveguides are used, with precisely varied guiding layer thickness and cladding layer thickness, as fabricated by high-precision magnetron sputtering systems. The controlled thickness variations in the range of 0.2 nm results in a desired phase shift of the different waveguide beams. Two kinds of samples, a one-dimensional waveguide array and periodic waveguide multilayers, were fabricated, each consisting of seven C layers as guiding layers and eight Ni layers as cladding layers. These are shown to yield distinctly different near-field patterns.


1995 ◽  
Vol 37 (6) ◽  
pp. 7-15 ◽  
Author(s):  
M.H. Francis ◽  
A.C. Newell ◽  
K.R. Grimm ◽  
J. Hoffman ◽  
H.E. Schrank

Sign in / Sign up

Export Citation Format

Share Document