field range
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 63)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Laura Gozzelino ◽  
Michela Fracasso ◽  
Mykola Solovyov ◽  
Fedor Gomory ◽  
Andrea Napolitano ◽  
...  

Abstract The use of superconducting (SC) materials is crucial for shielding quasi-static magnetic fields. However, the frequent requisite of space-saving solutions with high shielding performance requires the development of a 3D modelling procedure capable of predicting the screening properties for different orientations of the applied field. In this paper, we exploited a 3D numerical model based on a vector potential formulation to investigate the shielding ability of SC screens with cylindrical symmetry and a height/diameter aspect ratio close to unity, without and with the superimposition of a ferromagnetic (FM) circular shell. The chosen materials were MgB2 and soft iron. First, the calculation outcomes were compared with the experimental data obtained on different shielding arrangements, achieving a notable agreement in both axial-field (AF) and transverse-field (TF) orientations. Then, we used the thus validated modelling approach to investigate how the magnetic mitigation properties of a cup-shaped SC bulk can be improved by the superimposition of a coaxial FM cup. Calculations highlighted that the FM addition is very efficient in enhancing the shielding factors (SFs) in the TF orientation. Assuming a working temperature of 30 K and using a layout with the FM cup protruding over the SC one, shielding factors up to 8 times greater than those of the single SC cup were attained at low applied fields, reaching values equal or higher than 102 in the inner half of the shield. In the AF orientation, the same FM cup addition costs a modest worsening at low fields, but at the same time, it widens the applied field range, where SF ≥ 104 occurs near the close extremity of the shield, up over 1 T.


2021 ◽  
Vol 15 (1) ◽  
pp. 347-359
Author(s):  
Misagh Ketabdari ◽  
Ignacio P. Millán ◽  
Emanuele Toraldo ◽  
Maurizio Crispino ◽  
Mariano Pernetti

Aims: Air traffic and airport operations are expected to experience significant growth worldwide in the upcoming years. One of the possible approaches to adapt to this demand-led growth in the sector, while guaranteeing optimal levels of airport services and operations safety, is to maximize the capacities of busy airport infrastructures (in particular runways) by evacuating them in the shortest time possible to be ready for hosting next operations. Background: The main research areas in this field range from statistical risk analyses based on the registered accidents databases to simulation analyses modelling the behaviour of the aircraft during landing operations. Objective: The main objective of this study is to determine precisely the optimal distances of runway-taxiway junctions from the runway’s threshold, according to numerous impact parameters such as airport climate pattern, operating aircraft categories, infrastructure type, and capacity, route connections, operating costs, and associated risks. Methods: The authors developed a mathematical model with the goal of simulating the dynamic behaviour of the aircraft during landing and possible consequences introduced by the presence of contaminants over the pavement surface, by calculating their braking distances, and finally to optimize the use of existing infrastructures, specially runway-taxiway junctions, of a commercial airport. In this regard, the interactions between landing gear, pavement, and fluid were carefully analysed. The dynamic pavement skid resistance values in wet pavement conditions were evaluated for optimizing the required landing distances, which are setting the base for optimizing the location of the taxiway junctions. An Italian international airport was selected as the case study to be simulated by the developed model in order to optimize its runway capacity and maximize its rate of operations. Results: In the process, two different scenarios are simulated with the developed model; a modified design of an existing runway and an alternative design solution for constructing a new runway. The developed model offers improvements for both scenarios with respect to the current runway configurations in terms of reduction in mean rolling distances. The simulation of the selected case study shows that the taxiway modification scenario achieves a reduction of 23% in the mean rolling distance for wet and 25% for dry pavement conditions. While, for designing a new runway, greater reductions of 27% for wet and 39% for dry pavement conditions are obtained due to the higher flexibilities and degrees of freedom in designing a runway from the beginning. Conclusion: The developed model can precisely propose new configurations of the runway-taxiway junctions with lower mean rolling distances, which lower the operation costs and fuel consumption, decrease the runway evacuation times and increase the capacity of the airfield. The main advantage of this model is its ability to cover a wider spectrum of boundary conditions with respect to the existing models and its applicability for designing new runways, plus to optimize the configuration of existing infrastructures in order to satisfy the evolution of the industry.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012040
Author(s):  
Mengli Liu ◽  
Wei Du ◽  
Hua Su ◽  
Bo Liu ◽  
Hao Meng ◽  
...  

Abstract This work reports an energy-efficient strategy for realizing linear unipolar giant magnetoresistance (GMR) switch by using electric fields (E-fields). Herein, a modified spin-valve (SV) structure of double antiferromagnetic (AFM) pinning layers was adopted. Since the magnetization direction of ferromagnetic (FM) layer can be controlled via the strain-mediated magnetoelectric (ME) effect, a multiferroic heterostructure of SV/PMN-PT was fabricated. By applying an E-field on the PMN-PT substrate, an effective magnetic field Heff was produced along the [1-10] direction of PMN-PT. It can turn the magnetic moments of FM layer toward [1-10] direction. Accordingly, a linear GMR curve with a wide sensing field range was achieved. This E-field-induced linear magnetic switch can satisfy the demand for different switching field ranges in the same application system.


2021 ◽  
Author(s):  
◽  
Adrian Peter Paul Jongenelen

<p>This thesis documents the development of a time-of-flight (ToF) camera suitable for autonomous mobile robotics applications. By measuring the round trip time of emitted light to and from objects in the scene, the system is capable of simultaneous full-field range imaging. This is achieved by projecting amplitude modulated continuous wave (AMCW) light onto the scene, and recording the reflection using an image sensor array with a high-speed shutter amplitude modulated at the same frequency (of the order of tens of MHz). The effect is to encode the phase delay of the reflected light as a change in pixel intensity, which is then interpreted as distance. A full field range imaging system has been constructed based on the PMD Technologies PMD19k image sensor, where the high-speed shuttering mechanism is builtin to the integrated circuit. This produces a system that is considerably more compact and power efficient than previous iterations that employed an image intensifier to provide sensor modulation. The new system has comparable performance to commercially available systems in terms of distance measurement precision and accuracy, but is much more flexible with regards to its operating parameters. All of the operating parameters, including the image integration time, sensor modulation phase offset and modulation frequency can be changed in realtime either manually or automatically through software. This highly configurable system serves as an excellent platform for research into novel range imaging techniques. One promising technique is the utilisation of measurements using multiple modulation frequencies in order to maximise precision over an extended operating range. Each measurement gives an independent estimate of the distance with limited range depending on the modulation frequency. These are combined to give a measurement with extended maximum range using a novel algorithm based on the New Chinese Remainder Theorem. A theoretical model for the measurement precision and accuracy of the new algorithm is presented and verified with experimental results. All distance image processing is performed on a per-pixel basis in real-time using a Field Programmable Gate Array (FPGA). An efficient hardware implementation of the phase determination algorithm for calculating distance is investigated. The limiting resource for such an implementation is random access memory (RAM), and a detailed analysis of the trade-off between this resource and measurement precision is also presented.</p>


2021 ◽  
Author(s):  
◽  
Adrian Peter Paul Jongenelen

<p>This thesis documents the development of a time-of-flight (ToF) camera suitable for autonomous mobile robotics applications. By measuring the round trip time of emitted light to and from objects in the scene, the system is capable of simultaneous full-field range imaging. This is achieved by projecting amplitude modulated continuous wave (AMCW) light onto the scene, and recording the reflection using an image sensor array with a high-speed shutter amplitude modulated at the same frequency (of the order of tens of MHz). The effect is to encode the phase delay of the reflected light as a change in pixel intensity, which is then interpreted as distance. A full field range imaging system has been constructed based on the PMD Technologies PMD19k image sensor, where the high-speed shuttering mechanism is builtin to the integrated circuit. This produces a system that is considerably more compact and power efficient than previous iterations that employed an image intensifier to provide sensor modulation. The new system has comparable performance to commercially available systems in terms of distance measurement precision and accuracy, but is much more flexible with regards to its operating parameters. All of the operating parameters, including the image integration time, sensor modulation phase offset and modulation frequency can be changed in realtime either manually or automatically through software. This highly configurable system serves as an excellent platform for research into novel range imaging techniques. One promising technique is the utilisation of measurements using multiple modulation frequencies in order to maximise precision over an extended operating range. Each measurement gives an independent estimate of the distance with limited range depending on the modulation frequency. These are combined to give a measurement with extended maximum range using a novel algorithm based on the New Chinese Remainder Theorem. A theoretical model for the measurement precision and accuracy of the new algorithm is presented and verified with experimental results. All distance image processing is performed on a per-pixel basis in real-time using a Field Programmable Gate Array (FPGA). An efficient hardware implementation of the phase determination algorithm for calculating distance is investigated. The limiting resource for such an implementation is random access memory (RAM), and a detailed analysis of the trade-off between this resource and measurement precision is also presented.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
P. P. Shen ◽  
Y. T. Wang ◽  
B. A. Sun

The phenomenon of inverted hysteresis loop has been observed in many materials for the past decades. However, the physical origin of the inverted hysteresis loop has long been debated. Here, we report the completely inverted hysteresis loop with a clockwise cycle in the soft-magnetic nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy and amorphous Fe73.5Cu1Nb3Si13.5B9 alloy at room temperature. The negative remanence and positive coercivity were observed in the descending branch of magnetization curve when the scan field range was above 1 KOe. By comparing the results with that of the standard Pd sample, we found that the net coercivities of the nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy and standard Pd sample are almost equal for the different scanning field ranges. Therefore, it is confirmed that the phenomenon of completely inverted hysteresis loop is caused by the remanence of superconducting magnet rather than the structural inhomogeneity effects. Our results suggest that special care should be taken during the measurement of hysteresis loops using MPMS 3, especially for the materials with small coercivity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2815
Author(s):  
Dong Wan ◽  
Ningchen Ma ◽  
Taochuang Zhao ◽  
Xiaojing Cui ◽  
Zhaosu Wang ◽  
...  

The adaptable monitoring of the ubiquitous magnetic field is of great importance not only for scientific research but also for industrial production. However, the current detecting techniques are unwieldly and lack essential mobility owing to the complex configuration and indispensability of the power source. Here, we have constructed a self-powered magnetic sensor based on a subtle triboelectric nanogenerator (TENG) that consists of a magnetorheological elastomer (MRE). This magnetic sensor relies on triboelectrification and electrostatic induction to produce electrical signals in response to the MRE’s deformation induced by the variational magnetic field without using any external power sources. The fabricated magnetic sensor shows a fast response of 80ms and a desirable sensitivity of 31.6 mV/mT in a magnetic field range of 35–60 mT as well as preliminary vectorability enabled by the multichannel layout. Our work provides a new route for monitoring dynamic magnetic fields and paves a way for self-powered electric-magnetic coupled applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaoting Lin ◽  
Jaehong Jeong ◽  
Chaebin Kim ◽  
Yao Wang ◽  
Qing Huang ◽  
...  

AbstractSpin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeycomb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTO’s quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (⊥ b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.


2021 ◽  
Vol 19 ◽  
pp. 368-372
Author(s):  
Joao T. Cunha ◽  
◽  
Pedro J. Sebastiao ◽  
António Roque ◽  
Vitor Vaz da Silva ◽  
...  

In this paper, the design and development of a novel Fast-Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometer’s electromagnet is described. This magnet is tailored to increase the relaxometers’s usability, by increasing its portability capacities. It presents a compact toroidal shaped iron core, allowing to operate in a field range of 0 to 0.21 T, with high field homogeneity (less than 800 ppm in a volume of ≈ 0.57 cm3 ), low power consumption and reduced losses (about 40W). The simulation software COMSOL Multiphysics® is used to characterize the induced magnetic field, the heating and the cooling effects. The proposed optimized layout constitutes an innovative solution for FFC magnets.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Stefano Lanza ◽  
Fernando Marchesano ◽  
Luca Martucci ◽  
Irene Valenzuela

Abstract We observe a direct relation between the existence of fundamental axionic strings, dubbed EFT strings, and infinite distance limits in 4d $$ \mathcal{N} $$ N = 1 EFTs coupled to gravity. The backreaction of EFT strings can be interpreted as RG flow of their couplings, and allows one to probe different regimes within the field space of the theory. We propose that any 4d EFT infinite distance limit can be realised as an EFT string flow. We show that along such limits the EFT string becomes asymptotically tensionless, and so the EFT eventually breaks down. This provides an upper bound for the maximal field range of an EFT with a finite cut-off, and reproduces the Swampland Distance Conjecture from a bottom-up perspective. Even if there are typically other towers of particles becoming light, we propose that the mass of the leading tower scales as m2 ∼ $$ \mathcal{T} $$ T w in Planck units, with $$ \mathcal{T} $$ T the EFT string tension and w a positive integer. Our results hold even in the presence of a non-trivial potential, as long as its energy scale remains well below the cut-off. We check both proposals for large classes of 4d $$ \mathcal{N} $$ N = 1 string compactifications, finding that only the values w = 1, 2, 3 are realised.


Sign in / Sign up

Export Citation Format

Share Document