scholarly journals Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models

2017 ◽  
Vol 65 (12) ◽  
pp. 6213-6230 ◽  
Author(s):  
Theodore S. Rappaport ◽  
Yunchou Xing ◽  
George R. MacCartney ◽  
Andreas F. Molisch ◽  
Evangelos Mellios ◽  
...  
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 117460-117504 ◽  
Author(s):  
Long Zhang ◽  
Hui Zhao ◽  
Shuai Hou ◽  
Zhen Zhao ◽  
Haitao Xu ◽  
...  

2018 ◽  
Vol 3 (1) ◽  
pp. 35 ◽  
Author(s):  
Cihat Şeker ◽  
Turgut Ozturk ◽  
Muhammet Tahir Güneşer

In this proposed paper, a single band microstrip patch antenna for fifth generation (5G) wireless application was presented. 28, 38, 60 and 73 GHz frequency bands have been allocated for 5G mobile communications by International Telecommunications Union (ITU). In this paper, we proposed an antenna, which is suitable for the millimeter wave frequency. The single band antenna consists of new slot loaded on the radiating patch with the 50 ohms microstrip line feeding used. This single band antenna was simulated on a FR4 dielectric substrate have relative permittivity 4.4, loss tangent 0.02, and height 1.6 mm. The antenna was simulated by Electromagnetic simulation, computer software technology High Frequency Structural Simulator. And simulated result on return loss, VSWR, radiation pattern and 3D gain was presented. The parameters of the results well coherent and proved the literature for millimeter wave 5G wireless application at 38 GHz.


2020 ◽  
Vol 26 (3) ◽  
pp. 169-183
Author(s):  
Phudit Ampririt ◽  
Yi Liu ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
Leonard Barolli ◽  
...  

The Fifth Generation (5G) networks are expected to be flexible to satisfy demands of high-quality services such as high speed, low latencies and enhanced reliability from customers. Also, the rapidly increasing amount of user devices and high user’s requests becomes a problem. Thus, the Software-Defined Network (SDN) will be the key function for efficient management and control. To deal with these problems, we propose a Fuzzy-based SDN approach. This paper presents and compares two Fuzzy-based Systems for Admission Control (FBSAC) in 5G wireless networks: FBSAC1 and FBSAC2. The FBSAC1 considers for admission control decision three parameters: Grade of Service (GS), User Request Delay Time (URDT) and Network Slice Size (NSS). In FBSAC2, we consider as an additional parameter the Slice Priority (SP). So, FBSAC2 has four input parameters. The simulation results show that the FBSAC2 is more complex than FBSAC1, but it has a better performance for admission control.


Sign in / Sign up

Export Citation Format

Share Document