Miniaturized Dual Band Antennas for Intra-Oral Tongue Drive System in the ISM Bands 433 MHz and 915 MHz: Design, Safety, and Link Budget Considerations

2019 ◽  
Vol 67 (9) ◽  
pp. 5843-5852 ◽  
Author(s):  
Muhammad Zada ◽  
Hyoungsuk Yoo
Author(s):  
Sivaranjan Goswami ◽  
Kumaresh Sarmah ◽  
Angana Sarma ◽  
Kandarpa Kumar Sarma ◽  
Sunandan Baruah

Metamaterial-based design of microstrip antennas and other microwave structures have gained enormous popularity worldwide among researchers. The complementary split ring resonator (CSRR) is one of the most commonly used metamaterial structures in this direction. The CSRR structure yields a negative value of its effective permittivity at a narrow band near its resonant frequency. CSRR structure was initially proposed as a notch filtering element in microstrip transmission lines because of the negative permittivity. Later, the CSRR structure found its use in antennas and other microwave applications. The CSRR structure is reported to enhance the performance of a microstrip antenna in terms of its gain and bandwidth. In addition, CSRR structure is also used in the design of dual band antennas and antennas with integrated filters. This chapter deals with the practical design aspects relative to these applications of CSRR structures.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 154672-154682
Author(s):  
Xiumei Shen ◽  
Feng Liu ◽  
Luyu Zhao ◽  
Guan-Long Huang ◽  
Xiaowei Shi ◽  
...  

Author(s):  
Jae-Hyun Park ◽  
Young-Ho Ryu ◽  
Seung-Wook Lee ◽  
Jeong-Hae Lee ◽  
Eun-Seok Park ◽  
...  

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D. Srikar ◽  
Sundru Anuradha

Purpose This study aims to propose a two-element multi-input-multi-output (MIMO) antenna for cognitive radio MIMO applications to avoid the complexities involved in reconfigurable antennas and improve the spectrum utilization efficiency. Design/methodology/approach The proposed MIMO antenna system comprises a wideband antenna that operates at 2 GHz–12 GHz for sensing the spectrum and four pairs of antennas for communication, which are single and dual-band antennas. Each pair of antennas meant for communication consists of two similar antennas. Moreover, the antennas meant for communication cover 93% of the bandwidth of the sensing antenna. Findings The first pair of antennas accessible at ports P2 and P6 and the second pair of antennas accessible at ports P4 and P8, which are dual-band antennas, operate at 3.05 GHz–3.85 GHz, 5.8 GHz–8 GHz and 2.05 GHz–2.55 GHz, 4.7 GHz–6.1 GHz, respectively. While the third pair of antennas accessible at ports P3 and P7 and the fourth pair of antennas accessible at ports P5 and P9 are single-band antennas and operate at 3.85 GHz–4.7 GHz and 8 GHz–11 GHz, respectively. Minimum isolations of 20 dB and 15 dB are attained between every two similar antennas for communication and between the sensing antenna and the antennas meant for communication, respectively. The correctness of the proposed antenna is verified with a fine match between the results obtained from simulations and measurements. Originality/value The proposed MIMO antenna possesses salient features, such as polarization diversity and performing a maximum of four communication tasks when all the white spaces are detected.


Sign in / Sign up

Export Citation Format

Share Document