A new two-element MIMO antenna system for cognitive radio applications

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D. Srikar ◽  
Sundru Anuradha

Purpose This study aims to propose a two-element multi-input-multi-output (MIMO) antenna for cognitive radio MIMO applications to avoid the complexities involved in reconfigurable antennas and improve the spectrum utilization efficiency. Design/methodology/approach The proposed MIMO antenna system comprises a wideband antenna that operates at 2 GHz–12 GHz for sensing the spectrum and four pairs of antennas for communication, which are single and dual-band antennas. Each pair of antennas meant for communication consists of two similar antennas. Moreover, the antennas meant for communication cover 93% of the bandwidth of the sensing antenna. Findings The first pair of antennas accessible at ports P2 and P6 and the second pair of antennas accessible at ports P4 and P8, which are dual-band antennas, operate at 3.05 GHz–3.85 GHz, 5.8 GHz–8 GHz and 2.05 GHz–2.55 GHz, 4.7 GHz–6.1 GHz, respectively. While the third pair of antennas accessible at ports P3 and P7 and the fourth pair of antennas accessible at ports P5 and P9 are single-band antennas and operate at 3.85 GHz–4.7 GHz and 8 GHz–11 GHz, respectively. Minimum isolations of 20 dB and 15 dB are attained between every two similar antennas for communication and between the sensing antenna and the antennas meant for communication, respectively. The correctness of the proposed antenna is verified with a fine match between the results obtained from simulations and measurements. Originality/value The proposed MIMO antenna possesses salient features, such as polarization diversity and performing a maximum of four communication tasks when all the white spaces are detected.

2014 ◽  
Vol 57 (2) ◽  
pp. 360-364 ◽  
Author(s):  
Muhammad Umar Khan ◽  
Mohammad S. Sharawi

2021 ◽  
Author(s):  
Garima Singh ◽  
Gurjit Kaur

Abstract In this paper, single and multi-user coded-cooperation based cognitive radio system is developed by designing its mathematical model where both source and relay will communicate to a single destination with the help of each other. Then all possible multi-user scenarios are developed and their end-to-end outage probability (Pout) is calculated for underlay mode of cognitive radio. The performance of the system is analyzed in the form of channel gain and interference temperature constraint for Rayleigh fading channel. The proposed system concludes that the coded cooperation with cognitive radio outperform the available techniques in the form of bandwidth, diversity, spectrum utilization efficiency and also improves the quality of communication. Furthermore, the theoretical analysis of the outage probability for both system models is validated by asymptotic analysis. The proposed system can set as a standard for all those cognitive radio applications which requires better spectrum efficiency even if there is a scarcity of multiple physical antennas.


2014 ◽  
Vol 8 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Mohammed Younus Talha ◽  
Kamili Jagadeesh Babu ◽  
Rabah W. Aldhaheri

A novel compact multiple-input–multiple-output (MIMO) antenna system operating from 5 to 7.3 GHz is proposed for wireless applications. It comprises of two similar antennas with microstrip feeding and radiating patches developed on a reduced ground plane. The developed antenna system resonates at a dual-band of 5.4 and 6.8 GHz frequencies, giving an impedance bandwidth of 38% (based on S11 < −10 dB). The unique structure of the proposed MIMO system gives a reduced mutual coupling of −27 dB at 5.4 GHz resonant frequency and −19 dB at 6.8 GHz resonant frequency and in the entire operating band the coupling is maintained well below −16 dB. The envelope correlation coefficient of the proposed MIMO system is calculated and is found to be less than 0.05 in the operating band. The measured and simulation results are found in good agreement.


Author(s):  
Aziz Dkiouak ◽  
Mohssine El Ouahabi ◽  
Alia Zakriti ◽  
Mohsine Khalladi ◽  
Aicha Mchbal

In this paper, a compact dual band multiple-input multiple-output (MIMO) antenna system for WLAN and X-band satellite applications (2.4/9.8 GHz respectively) is proposed. On the top face of the substrate, two antenna elements with a size of 20 × 24 mm2 are placed side by side and fed with matched orthogonal micro-strip lines. The two antenna elements have orthogonal polarization which can reduce the mutual coupling between its ports. The designed antenna system is fabricated and measured to validate the simulation results. The impedance bandwidths are about 370 MHz (2.19 to 2.56 GHz) and 630 MHz (9.44 to 10.07 GHz), while the obtained isolation is greater than 14 dB at the operating bands. Furthermore, the envelope correlation is less than 0.052 and 0.008 at 2.4 and 9.8 GHz, respectively. Hence the diversity gain is higher than 9.98 in the frequency bands of interest.


2021 ◽  
Vol 36 (1) ◽  
pp. 55-60
Author(s):  
Qin Li ◽  
Yufa Sun ◽  
Hongyu Fang

In order to improve the channel capacity of communication equipment and reduce the size of antenna, an asymmetric coplanar strip (ACS) fed four-element UWB MIMO antenna with dual band notches is proposed in this paper. The antenna has a simple structure and a compact size of 37×37 mm². The antenna consists of four modifled staircase-shaped radiation elements and four floor on the same side. The antenna elements are placed vertically without additional decoupling structure, and the isolation less than -15 dB in the working bandwidth of 2.9-10.6 GHz can be obtained by using polarization diversity. In addition, the antenna has the notched characteristic of WiMAX and WLAN band. The antenna has good gain and low envelop correlation coefficient (ECC), and the simulation results agree with the measured results, which indicates that the antenna is suitable for UWB system.


2021 ◽  
Vol 36 (3) ◽  
pp. 282-294
Author(s):  
Asmaa Farahat ◽  
Khlaid Hussein

In this paper, a dual-band (28/38 GHz) linear antenna arrays of four and eight elements are proposed to work as a MIMO arrays for the 5G communication systems. Each element in the array is a dual-band Yagi-Uda antenna designed to operate at 28 and 38 GHz. The eight-elements array size has a total dimension of 79.4 mm x 9.65 mm excluding the feeding microstrip line. The maximum gain of the array is about 18 dB. The peaks of correlation at matched angles (PCMA) technique is applied to determine the direction of arrival for multiple incoming signals. The effects of phase noise and additive Gaussian noise on the error in the DoA estimation are studied showing good accuracy of the PCMA algorithm. Numerical and experimental investigations are achieved to assess the performance of both the single-element antenna and the eight-element MIMO linear antenna array. It is shown that the simulation results agree with the experimental measurements and both show good performance of the single antenna as well as the MIMO linear array system. The envelope correlation coefficient (ECC) and the diversity gain (DG) are calculated and the results show that the proposed MIMO antenna system is suitable for the forthcoming 5G mobile communications. The radiation patterns for single antenna and four-element array are measured and compared to the electromagnetic simulation results showing good agreement.


Sign in / Sign up

Export Citation Format

Share Document