scholarly journals A Low-Profile and High-Gain Frequency Beam Steering Subterahertz Antenna Enabled by Silicon Micromachining

2020 ◽  
Vol 68 (2) ◽  
pp. 672-682 ◽  
Author(s):  
Adrian Gomez-Torrent ◽  
Maria Garcia-Vigueras ◽  
Laurent Le Coq ◽  
Adham Mahmoud ◽  
Mauro Ettorre ◽  
...  
Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Alessandro Niccolai ◽  
Francesco Grimaccia ◽  
Marco Mussetta ◽  
Riccardo Zich ◽  
Alessandro Gandelli

Reflectarray antennas are low-profile high-gain systems widely applied in the aerospace industry. The increase in their application is leading to the problem of getting more advanced performance while keeping the system as simple as possible. In these cases, their design cannot be conducted via analytical methods, thus evolutionary optimization algorithms are often implemented. Indeed, the design is characterized by the presence of many local minima, by high number of design variables, and by the high computational burden required to evaluate the antenna performance. The purpose of this paper is to develop, implement, and test a complete Optimization Environment that can be applied to achieve high scanning capabilities with a reflectarray. The design of the optimization environment has been selected to be flexible enough to be applied also with other different algorithms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hossein Eskandari ◽  
Juan Luis Albadalejo-Lijarcio ◽  
Oskar Zetterstrom ◽  
Tomáš Tyc ◽  
Oscar Quevedo-Teruel

AbstractConformal transformation optics is employed to enhance an H-plane horn’s directivity by designing a graded-index all-dielectric lens. The transformation is applied so that the phase error at the aperture is gradually eliminated inside the lens, leading to a low-profile high-gain lens antenna. The physical space shape is modified such that singular index values are avoided, and the optical path inside the lens is rescaled to eliminate superluminal regions. A prototype of the lens is fabricated using three-dimensional printing. The measurement results show that the realized gain of an H-plane horn antenna can be improved by 1.5–2.4 dB compared to a reference H-plane horn.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shruti Vashist ◽  
M. K. Soni ◽  
P. K. Singhal

Rotman lenses are the beguiling devices used by the beamforming networks (BFNs). These lenses are generally used in the radar surveillance systems to see targets in multiple directions due to its multibeam capability without physically moving the antenna system. Now a days these lenses are being integrated into many radars and electronic warfare systems around the world. The antenna should be capable of producing multiple beams which can be steered without changing the orientation of the antenna. Microwave lenses are the one who support low-phase error, wideband, and wide-angle scanning. They are the true time delay (TTD) devices producing frequency independent beam steering. The emerging printed lenses in recent years have facilitated the advancement of designing high performance but low-profile, light-weight, and small-size and networks (BFNs). This paper will review and analyze various design concepts used over the years to improve the scanning capability of the lens developed by various researchers.


2021 ◽  
Author(s):  
Min Wang ◽  
Jin Zhang ◽  
Peng Ye ◽  
Zhengchuan Chen
Keyword(s):  

Author(s):  
M. Kamran Khattak ◽  
M. Salman Khattak ◽  
A. Rehman ◽  
C. Lee ◽  
D. Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document