High gain, dual frequency, dual polarization, low profile antenna design for millimetre-wave communication systems

Author(s):  
A. Chan
Author(s):  
Nora Mohamed Mohamed-Hicho ◽  
Eva Antonino-Daviu ◽  
Marta Cabedo-Fabres ◽  
Miguel Ferrando-Bataller ◽  
Daniel Sanchez-Escuderos

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1941
Author(s):  
Inzamam Ahmad ◽  
Sadiq Ullah ◽  
Shakir Ullah ◽  
Usman Habib ◽  
Sarosh Ahmad ◽  
...  

Modern advancements in wearable smart devices and ultra-high-speed terahertz (THz) communication systems require low cost, low profile, and highly efficient antenna design with high directionality to address the propagation loss at the THz range. For this purpose, a novel shape, high gain antenna for THz frequency range applications is presented in this work. The proposed antenna is based on a photonic bandgap (PBG)-based crystal polyimide substrate which gives optimum performance in terms of gain (9.45 dB), directivity (9.99 dBi), and highly satisfactory VSWR (<1) at 0.63 THz. The performance of the antenna is studied on PBGs of different geometrical configurations and the results are compared with the antenna based on the homogeneous polyimide-based substrate. The effects of variations in the dimensions of the PBG unit cells are also studied to achieve a −10 dB bandwidth of 28.97 GHz (0.616 to 0.64 THz).


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yann Mahe ◽  
Anne Chousseaud ◽  
Marc Brunet ◽  
Bruno Froppier

Some results on embedded antennas for medical wireless communication systems are presented. Medical telemetry can advantageously assist medical diagnostics. For example, you can better locate a diseased area by monitoring temperature inside the human body. In order to establish efficient wireless links in such an environment, a special attention should be paid to the antenna design. It is required to be of a low profile, very small regardless of the working frequency—434 MHz in the ISM band, safe, and cost effective. Design of the as-considered antenna is proposed based on a simple model. The approach has been demonstrated for a compact flexible antenna with a factor of 10 with respect to the half-wave antenna, rolling up inside an ingestible pill. Measured and calculated impedance behaviour and radiation characteristics of the modified patch are determined. Excellent agreement was found between experiment and theory.


Sign in / Sign up

Export Citation Format

Share Document