A Graph Guided Convolutional Neural Network for Surface Defect Recognition

Author(s):  
Yucheng Wang ◽  
Liang Gao ◽  
Yiping Gao ◽  
Xinyu Li
2022 ◽  
Author(s):  
Mian Ahmad Jan

Abstract In industrial production, defect detection is one of the key methods to control the quality of mechanical design products. Although defect detection algorithms based on traditional machine learning can greatly improve detection efficiency, manual feature extraction is required and the design process is complicated. With the rapid development of CNN, major breakthroughs have been made in computer vision. Therefore, building a surface defect detection algorithm for mechanical design products based on DCNNs plays a very important role in improving industrial production efficiency. This paper studies the surface defect detection algorithm of mechanical products based on deep convolutional neural network, focusing on solving two types of problems: defect recognition and defect segmentation. Aiming at the problem of defect recognition, this paper studies a defect recognition algorithm based on fully convolutional block detection. This algorithm introduces the idea of block detection into the ResNet fully convolutional neural network. While realizing the local discrimination mechanism, it overcomes the shortcomings of the traditional block detection receptive field. Compared with the original ResNet image classification algorithm, this algorithm has stronger generalization ability and detection ability of small defects. Aiming at the problem of defect segmentation, this paper studies a defect segmentation algorithm based on improved Deeplabv3+.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bruce Lim ◽  
Ewen Bellec ◽  
Maxime Dupraz ◽  
Steven Leake ◽  
Andrea Resta ◽  
...  

AbstractCoherent diffraction imaging enables the imaging of individual defects, such as dislocations or stacking faults, in materials. These defects and their surrounding elastic strain fields have a critical influence on the macroscopic properties and functionality of materials. However, their identification in Bragg coherent diffraction imaging remains a challenge and requires significant data mining. The ability to identify defects from the diffraction pattern alone would be a significant advantage when targeting specific defect types and accelerates experiment design and execution. Here, we exploit a computational tool based on a three-dimensional (3D) parametric atomistic model and a convolutional neural network to predict dislocations in a crystal from its 3D coherent diffraction pattern. Simulated diffraction patterns from several thousands of relaxed atomistic configurations of nanocrystals are used to train the neural network and to predict the presence or absence of dislocations as well as their type (screw or edge). Our study paves the way for defect-recognition in 3D coherent diffraction patterns for material science.


Sign in / Sign up

Export Citation Format

Share Document