TDOA Estimation for Multiple Sound Sources in Noisy and Reverberant Environments Using Broadband Independent Component Analysis

2011 ◽  
Vol 19 (6) ◽  
pp. 1490-1503 ◽  
Author(s):  
Anthony Lombard ◽  
Yuanhang Zheng ◽  
Herbert Buchner ◽  
Walter Kellermann
2020 ◽  
Vol 8 (3) ◽  
pp. 219
Author(s):  
Angga Pramana Putra ◽  
I Gede Arta Wibawa

Geguntangan is pesantian in religious ceremonies in Bali accompanied by gamelan music. The human sense of hearing tends to have limitations, which causes not all vocals mixed with gamelan to be heard clearly. Therefore we need a system that can be used to separate vocals with gamelan in the geguntangan. Separation of sound sources is categorized as Blind Source Separation (BSS) or also called Blind Signal Separation, which means an unknown source. The algorithm used to handle BSS is the Fast Independent Component Analysis (FastICA) algorithm with a focus on separating the sound signal in a wav-format sound file. FastICA algorithm is used for the sound separation process with the value parameter used is Mean Square Error (MSE). From the simulation results show the results of MSE calculations using the mixing matrix [0.3816, 0.8678], [0.8534, -0.5853] obtained the results for the FastICA method, the MSE value is 3.60 x 10-5 for the vocal and 1.71 x 10-6 for the instrument.


2011 ◽  
Vol 14 (4) ◽  
pp. 34-42
Author(s):  
Quang Tan Truong ◽  
Huy Quang Tran ◽  
Phuong Huu Nguyen

Our ears often simultaneously receive various sound sources (speech, music, noise . . .), but we can still listen to the intended sound. A system of speech recognition must be able to achieve the same intelligent level. The problem is that we receive many mixed (combined) signals from many different source signals, and would like to recover them separately. This is the problem of Blind Source Separation (BSS). In the last decade or so a method has been developed to solve the above problem effectively, that is the Independent Component Analysis (ICA). There are many ICA algorithms for different applications. This report describes our application to sound separation when there are more sources than mixtures (underdetermined case). The results were quite good.


2020 ◽  
Vol 10 (7) ◽  
pp. 2593
Author(s):  
Ke Zhang ◽  
Yangjie Wei ◽  
Dan Wu ◽  
Yi Wang

Voice signals acquired by a microphone array often include considerable noise and mutual interference, seriously degrading the accuracy and speed of speech separation. Traditional beamforming is simple to implement, but its source interference suppression is not adequate. In contrast, independent component analysis (ICA) can improve separation, but imposes an iterative and time-consuming process to calculate the separation matrix. As a supporting method, principle component analysis (PCA) contributes to reduce the dimension, retrieve fast results, and disregard false sound sources. Considering the sparsity of frequency components in a mixed signal, we propose an adaptive fast speech separation algorithm based on multiple sound source localization as preprocessing to select between beamforming and frequency domain ICA according to different mixing conditions per frequency bin. First, a fast positioning algorithm allows calculating the maximum number of components per frequency bin of a mixed speech signal to prevent the occurrence of false sound sources. Then, PCA reduces the dimension to adaptively adjust the weight of beamforming and ICA for speech separation. Subsequently, the ICA separation matrix is initialized based on the sound source localization to notably reduce the iteration time and mitigate permutation ambiguity. Simulation and experimental results verify the effectiveness and speedup of the proposed algorithm.


2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


Sign in / Sign up

Export Citation Format

Share Document