Image reconstruction techniques in tomographic imaging systems

1986 ◽  
Vol 34 (4) ◽  
pp. 952-962 ◽  
Author(s):  
M. Soumekh
2019 ◽  
Vol 28 (1) ◽  
pp. 1-7
Author(s):  
Hassan Hirji ◽  
Keith Sullivan ◽  
Imran Lasker ◽  
Mhd S. Sharif ◽  
Andre Nunes ◽  
...  

2017 ◽  
pp. 491-535
Author(s):  
Shailendra Tiwari ◽  
Rajeev Srivastava

Image reconstruction from projection is the field that lays the foundation for Medical Imaging or Medical Image Processing. The rapid and proceeding progress in medical image reconstruction, and the related developments in analysis methods and computer-aided diagnosis, has promoted medical imaging into one of the most important sub-fields in scientific imaging. Computer technology has enabled tomographic and three-dimensional reconstruction of images, illustrating both anatomical features and physiological functioning, free from overlying structures. In this chapter, the authors share their opinions on the research and development in the field of Medical Image Reconstruction Techniques, Computed Tomography (CT), challenges and the impact of future technology developments in CT, Computed Tomography Metrology in industrial research & development, technology, and clinical performance of different CT-scanner generations used for cardiac imaging, such as Electron Beam CT (EBCT), single-slice CT, and Multi-Detector row CT (MDCT) with 4, 16, and 64 simultaneously acquired slices. The authors identify the limitations of current CT-scanners, indicate potential of improvement and discuss alternative system concepts such as CT with area detectors and Dual Source CT (DSCT), recent technology with a focus on generation and detection of X-rays, as well as image reconstruction are discussed. Furthermore, the chapter includes aspects of applications, dose exposure in computed tomography, and a brief overview on special CT developments. Since this chapter gives a review of the major accomplishments and future directions in this field, with emphasis on developments over the past 50 years, the interested reader is referred to recent literature on computed tomography including a detailed discussion of CT technology in the references section.


2020 ◽  
Vol 6 (4) ◽  
pp. 18 ◽  
Author(s):  
Sophia Bethany Coban ◽  
Felix Lucka ◽  
Willem Jan Palenstijn ◽  
Denis Van Loo ◽  
Kees Joost Batenburg

In tomographic imaging, the traditional process consists of an expert and an operator collecting data, the expert working on the reconstructed slices and drawing conclusions. The quality of reconstructions depends heavily on the quality of the collected data, except that, in the traditional process of imaging, the expert has very little influence over the acquisition parameters, experimental plan or the collected data. It is often the case that the expert has to draw limited conclusions from the reconstructions, or adapt a research question to data available. This method of imaging is static and sequential, and limits the potential of tomography as a research tool. In this paper, we propose a more dynamic process of imaging where experiments are tailored around a sample or the research question; intermediate reconstructions and analysis are available almost instantaneously, and expert has input at any stage of the process (including during acquisition) to improve acquisition or image reconstruction. Through various applications of 2D, 3D and dynamic 3D imaging at the FleX-ray Laboratory, we present the unexpected journey of exploration a research question undergoes, and the surprising benefits it yields.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Yair Rivenson ◽  
Yichen Wu ◽  
Aydogan Ozcan

Abstract Recent advances in deep learning have given rise to a new paradigm of holographic image reconstruction and phase recovery techniques with real-time performance. Through data-driven approaches, these emerging techniques have overcome some of the challenges associated with existing holographic image reconstruction methods while also minimizing the hardware requirements of holography. These recent advances open up a myriad of new opportunities for the use of coherent imaging systems in biomedical and engineering research and related applications.


Sign in / Sign up

Export Citation Format

Share Document