array imaging
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 67)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zhang Chi ◽  
Guang-yan Dong ◽  
Heng-kuo Qu ◽  
ZHAO Zhi-yuan ◽  
PENG Feng-chao ◽  
...  

2021 ◽  
Vol 923 (2) ◽  
pp. 240
Author(s):  
Kazushi Sakamoto ◽  
Sergio Martín ◽  
David J. Wilner ◽  
Susanne Aalto ◽  
Aaron S. Evans ◽  
...  

Abstract We present the line observations in our Atacama Millimeter-Submillimeter Array imaging spectral scan toward three deeply buried nuclei in NGC 4418 and Arp 220. We cover 67 GHz in f rest = 215–697 GHz at about 0.″2 (30, 80 pc) resolution. All the nuclei show dense line forests; we report our initial line identification using 55 species. The line velocities generally indicate gas rotation around each nucleus, tracing nuclear disks of ∼100 pc in size. We confirmed the counter-rotation of the nuclear disks in Arp 220 and that of the nuclear disk and the galactic disk in NGC 4418. While the brightest lines exceed 100 K, most of the major lines and many 13C isotopologues show absorption against even brighter continuum cores of the nuclei. The lines with higher upper-level energies, including those from vibrationally excited molecules, tend to arise from smaller areas, indicating radially varying conditions in these nuclei. The outflows from the two Arp 220 nuclei cause blueshifted line absorption below the continuum level. The absorption mostly has small spatial offsets from the continuum peaks to indicate the outflow orientations. The bipolar outflow from the western nucleus is also imaged in multiple emission lines, showing the extent of ∼1″ (400 pc). Redshifted line absorption against the nucleus of NGC 4418 indicates either an inward gas motion or a small collimated outflow slanted to the nuclear disk. We also resolved some previous confusions due to line blending and misidentification.


2021 ◽  
Vol 14 (12) ◽  
pp. 126505
Author(s):  
Yoshikazu Ohara ◽  
Sylvain Haupert ◽  
Sinan Li

Abstract Nondestructive evaluation of closed cracks is one of the most challenging problems in ultrasonic testing. Here, we propose a novel closed-crack imaging technique combining ultrafast phased-array with pump excitation. The pump excitation with kHz frequency can effectively induce the crack opening/closing behaviors since it can generate a large displacement of 1000 nm order. At the same time, ultrafast phased-array imaging, i.e. plane wave imaging, with MHz frequency stroboscopically captures the high-speed crack dynamics induced by pump excitation. We successfully proved the concept in a closed fatigue crack specimen.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2821
Author(s):  
Chengwu You ◽  
Zhenyu Long ◽  
Defeng Liu ◽  
Wei Liu ◽  
Tianyi Wang ◽  
...  

The terahertz (THz) rotation mirror imaging system is an alternative to the THz array imaging system. A THz rotation mirror imaging system costs less than a THz array imaging system, while the imaging speed of a THz rotation mirror imaging system is much higher than the imaging speed of a THz raster-scan imaging system under the same hardware conditions. However, there is some distortion in the THz image from the THz rotation mirror imaging system. The distortion, which makes images from the THz rotation mirror imaging system difficult to identify, results from the imaging principle of the THz rotation mirror imaging system. In this article, a method based on the scale-recurrent network (SRN) is put in place to correct the distortion. A comparison between distorted THz images and corrected images shows that the proposed method significantly increases the structural similarity between the THz images and the samples.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7451
Author(s):  
Nanfang Lyu ◽  
Jian Zuo ◽  
Yuanmeng Zhao ◽  
Cunlin Zhang

Terahertz focal plane array imaging methods, direct camera imaging and conventional light field imaging methods are incapable of resolving and separating layers of multilayer objects. In this paper, for the purpose of fast, high-resolution and layer-resolving imaging of multilayer structures with different reflection characteristics, a novel angular intensity filtering (AIF) method based on terahertz light-field imaging is purposed. The method utilizes the extra dimensional information from the 4D light field and the reflection characteristics of the imaging object, and the method is capable to resolve and reconstruct layers individually. The feasibility of the method is validated by experiment on both “idealized” and “practical” multilayer samples, and the advantages in performance of the method are proven by quantitative comparison with conventional methods.


Aorta ◽  
2021 ◽  
Author(s):  
Eduardo Bossone ◽  
Riccardo Gorla ◽  
Brigida Ranieri ◽  
Valentina Russo ◽  
Heinz Jakob ◽  
...  

AbstractAcute aortic syndromes (AAS) encompass a group of life-threatening medical conditions (acute aortic dissection [AAD], intramural hematoma, and penetrating aortic ulcer) with a common pathophysiological pathway. Due to overlapping symptoms and signs with other cardiovascular emergencies, the diagnosis remains challenging resulting in time delays and related increased in-hospital and long-term morbidity and mortality. The Cardiovascular Department of Johannes Gutenberg University in Mainz at West-German Heart Centre in Essen (Germany) first described (in 1984) AAD by transesophageal echocardiography, AAD diagnostic features, and furtherly explored the implementation of “invasive” imaging techniques, namely, intravascular ultrasound and intraluminal phased-array imaging. Furthermore, pioneer studies were undertaken on the biomarker and imaging interplay, namely, D-dimer and F-fluorodeoxyglucose positron emission tomography/computed tomography. We discuss the unique 35-year-long Mainz–Essen experience on the diagnostic and prognostic role of serological and imaging biomarkers in AAS.


2021 ◽  
Vol 2021 (29) ◽  
pp. 288-293
Author(s):  
Alexandra Spote ◽  
Pierre-Jean Lapray ◽  
Jean-Baptiste Thomas ◽  
Ivar Farup

This article considers the joint demosaicing of colour and polarisation image content captured with a Colour and Polarisation Filter Array imaging system. The Linear Minimum Mean Square Error algorithm is applied to this case, and its performance is compared to the state-of-theart Edge-Aware Residual Interpolation algorithm. Results show that the LMMSE demosaicing method gives statistically higher scores on the largest tested database, in term of peak signal-to-noise ratio relatively to a CPFA-dedicated algorithm.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012001
Author(s):  
R Monkhoev ◽  
M Ternovoy ◽  
I Astapov ◽  
P Bezyazeekov ◽  
A Borodin ◽  
...  

Abstract The Tunka-Grande array is part of a single experimental complex, which also includes the Tunka-133 and TAIGA-HiScORE (High Sensitivity COsmic Rays and gamma Explorer) wide-angle Cherenkov arrays, TAIGA-IACT array (Imaging Atmospheric Cherenkov Telescope) and TAGA-MUON scintillation array. This complex is located in the Tunka Valley (Buryatia Republic, Russia), 50 km from Lake Baikal. It is designed to study the energy spectrum and the mass composition of charged cosmic rays in the energy range 100 TeV - 1000 PeV, to search for diffuse gamma rays above 100 TeV and to study local sources of gamma rays with energies above 30 TeV. This report outlines 3 key points. The first is the description of the Tunka-Grande scintillation array. The second one presents the computer simulation strategy of the Tunka Grande array based on the Geant4 software. The third one is devoted to the prospects for future research in the field of cosmic ray physics and gamma-ray astronomy using simulation results.


2021 ◽  
Author(s):  
Pedro Gonzalez-Rodriguez ◽  
Arnold D Kim ◽  
Chrysoula Tsogka

Abstract We develop and analyze a quantitative signal subspace imaging method for single-frequency array imaging. This method is an extension to MUSIC (multiple signal classification) which uses (i) the noise subspace to determine the location and support of targets, and (ii) the signal subspace to recover quantitative information about the targets. For point targets, we are able to recover the complex reflectivity and for an extended target under the Born approximation, we are able to recover a scalar quantity that is related to the product of the volume and relative dielectric permittivity of the target. Our resolution analysis for a point target demonstrates this method is capable of achieving exact recovery of the complex reflectivity at subwavelength resolution. Additionally, this resolution analysis shows that noise in the data effectively acts as a regularization to the imaging functional resulting in a method that is surprisingly more robust and effective with noise than without noise.


Sign in / Sign up

Export Citation Format

Share Document