Large-scale and Scalable Latent Factor Analysis via Distributed Alternative Stochastic Gradient Descent for Recommender Systems

Author(s):  
Xiaoyu Shi ◽  
Qiang He ◽  
Xin Luo ◽  
Yannai Bai ◽  
Mingsheng Shang
Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1652
Author(s):  
Wanida Panup ◽  
Rabian Wangkeeree

In this paper, we propose a stochastic gradient descent algorithm, called stochastic gradient descent method-based generalized pinball support vector machine (SG-GPSVM), to solve data classification problems. This approach was developed by replacing the hinge loss function in the conventional support vector machine (SVM) with a generalized pinball loss function. We show that SG-GPSVM is convergent and that it approximates the conventional generalized pinball support vector machine (GPSVM). Further, the symmetric kernel method was adopted to evaluate the performance of SG-GPSVM as a nonlinear classifier. Our suggested algorithm surpasses existing methods in terms of noise insensitivity, resampling stability, and accuracy for large-scale data scenarios, according to the experimental results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jinhuan Duan ◽  
Xianxian Li ◽  
Shiqi Gao ◽  
Zili Zhong ◽  
Jinyan Wang

With the vigorous development of artificial intelligence technology, various engineering technology applications have been implemented one after another. The gradient descent method plays an important role in solving various optimization problems, due to its simple structure, good stability, and easy implementation. However, in multinode machine learning system, the gradients usually need to be shared, which will cause privacy leakage, because attackers can infer training data with the gradient information. In this paper, to prevent gradient leakage while keeping the accuracy of the model, we propose the super stochastic gradient descent approach to update parameters by concealing the modulus length of gradient vectors and converting it or them into a unit vector. Furthermore, we analyze the security of super stochastic gradient descent approach and demonstrate that our algorithm can defend against the attacks on the gradient. Experiment results show that our approach is obviously superior to prevalent gradient descent approaches in terms of accuracy, robustness, and adaptability to large-scale batches. Interestingly, our algorithm can also resist model poisoning attacks to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document