Free-Space Optical Quantum Communications in Turbulent Channels With Receiver Diversity

2020 ◽  
Vol 68 (9) ◽  
pp. 5706-5717
Author(s):  
Renzhi Yuan ◽  
Julian Cheng
2021 ◽  
Author(s):  
Masoud Ghalaii ◽  
Stefano Pirandola

Abstract Since the invention of the laser in the 60s, one of the most fundamental communication channels has been the free-space optical channel. For this type of channel, a number of effects generally need to be considered, including diffraction, refraction, atmospheric extinction, pointing errors and, most importantly, turbulence. Because of all these adverse features, the free-space channel is more difficult to study than a stable fiber-based link. For the same reasons, only recently it has been possible to establish the ultimate performances achievable in quantum communications via free-space channels. Differently from previous literature, mainly focused on the regime of weak turbulence, this work considers the free-space optical channel in the more challenging regime of moderate-to-strong turbulence. This regime may occur in long-distance free-space links on the ground, in uplink to high-altitude platform systems (HAPS) and, more interestingly, in downlink from near-horizon satellites. In such a regime we rigorously investigate ultimate limits for quantum communications and show that composable keys can be extracted using continuous variable quantum key distribution. In particular, we apply our results to downlink from satellites at large zenith angles, for which not only turbulence is strong but also refraction causes non-trivial effects in terms of trajectory elongation.


2014 ◽  
Vol 35 (4) ◽  
Author(s):  
Prabhmandeep Kaur ◽  
Virander Kumar Jain ◽  
Subrat Kar

AbstractIn this paper, we investigate the performance of a Free Space Optic (FSO) link considering the impairments caused by the presence of various weather conditions such as very clear air, drizzle, haze, fog, etc., and turbulence in the atmosphere. Analytic expression for the outage probability is derived using the gamma-gamma distribution for turbulence and accounting the effect of weather conditions using the Beer-Lambert's law. The effect of receiver diversity schemes using aperture averaging and array receivers on the outage probability is studied and compared. As the aperture diameter is increased, the outage probability decreases irrespective of the turbulence strength (weak, moderate and strong) and weather conditions. Similar effects are observed when the number of direct detection receivers in the array are increased. However, it is seen that as the desired level of performance in terms of the outage probability decreases, array receiver becomes the preferred choice as compared to the receiver with aperture averaging.


Sign in / Sign up

Export Citation Format

Share Document