A Spectral-Correlation-Based Blind Calibration Method for Time-Interleaved ADCs

Author(s):  
Han Niu ◽  
Jie Yuan
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Kuojun Yang ◽  
Shulin Tian ◽  
Peng Ye ◽  
Peng Zhang ◽  
Yuanjin Zheng

Time-interleaved technique is widely used to increase the sampling rate of analog-to-digital converter (ADC). However, the channel mismatches degrade the performance of time-interleaved ADC (TIADC). Therefore, a statistic-based calibration method for TIADC is proposed in this paper. The average value of sampling points is utilized to calculate offset error, and the summation of sampling points is used to calculate gain error. After offset and gain error are obtained, they are calibrated by offset and gain adjustment elements in ADC. Timing skew is calibrated by an iterative method. The product of sampling points of two adjacent subchannels is used as a metric for calibration. The proposed method is employed to calibrate mismatches in a four-channel 5 GS/s TIADC system. Simulation results show that the proposed method can estimate mismatches accurately in a wide frequency range. It is also proved that an accurate estimation can be obtained even if the signal noise ratio (SNR) of input signal is 20 dB. Furthermore, the results obtained from a real four-channel 5 GS/s TIADC system demonstrate the effectiveness of the proposed method. We can see that the spectra spurs due to mismatches have been effectively eliminated after calibration.


Sign in / Sign up

Export Citation Format

Share Document