scholarly journals Optimal Real-Time Scheduling of Control Tasks With State Feedback Resource Allocation

2009 ◽  
Vol 17 (2) ◽  
pp. 309-326 ◽  
Author(s):  
M.E.-M. Ben Gaid ◽  
A.S. Cela ◽  
Y. Hamam
2020 ◽  
Vol 10 (7) ◽  
pp. 2491
Author(s):  
Shengkai Chen ◽  
Shuliang Fang ◽  
Renzhong Tang

The cloud manufacturing platform needs to allocate the endlessly emerging tasks to the resources scattered in different places for processing. However, this real-time scheduling problem in the cloud environment is more complicated than that in a traditional workshop because constraints, such as type matching, task precedence, resource occupation, and logistics duration, need to be met, and the internal manufacturing plan of providers must also be considered. Since the platform aggregates massive manufacturing resources to serve large-scale manufacturing tasks, the space of feasible solutions is huge, resulting in many conventional search algorithms no longer being applicable. In this paper, we considered resource allocation as the key procedure for real-time scheduling, and an ANN (Artificial Neural Network) based model is established to predict the task completion status for resource allocation among candidates. The trained ANN model has high prediction accuracy, and the ANN-based scheduling approach performs better than the preferred method in terms of the optimization objectives, including total cost, service satisfaction, and make-span. In addition, the proposed approach has potential in the application for smart manufacturing or Industry 4.0 because of its high response performance and good scalability.


2021 ◽  
Author(s):  
Antoine Bertout ◽  
Joël Goossens ◽  
Emmanuel Grolleau ◽  
Roy Jamil ◽  
Xavier Poczekajlo

2021 ◽  
Vol 13 (6) ◽  
pp. 3400
Author(s):  
Jia Ning ◽  
Sipeng Hao ◽  
Aidong Zeng ◽  
Bin Chen ◽  
Yi Tang

The high penetration of renewable energy brings great challenges to power system operation and scheduling. In this paper, a multi-timescale coordinated method for source-grid-load is proposed. First, the multi-timescale characteristics of wind forecasting power and demand response (DR) resources are described, and the coordinated framework of source-grid-load is presented under multi-timescale. Next, economic scheduling models of source-grid-load based on multi-timescale DR under network constraints are established in the process of day-ahead scheduling, intraday scheduling, and real-time scheduling. The loads are classified into three types in terms of different timescale. The security constraints of grid side and time-varying DR potential are considered. Three-stage stochastic programming is employed to schedule resources of source side and load side in day-ahead, intraday, and real-time markets. The simulations are performed in a modified Institute of Electrical and Electronics Engineers (IEEE) 24-node system, which shows a notable reduction in total cost of source-grid-load scheduling and an increase in wind accommodation, and their results are proposed and discussed against under merely two timescales, which demonstrates the superiority of the proposed multi-timescale models in terms of cost and demand response quantity reduction.


Sign in / Sign up

Export Citation Format

Share Document