scholarly journals An ANN-Based Approach for Real-Time Scheduling in Cloud Manufacturing

2020 ◽  
Vol 10 (7) ◽  
pp. 2491
Author(s):  
Shengkai Chen ◽  
Shuliang Fang ◽  
Renzhong Tang

The cloud manufacturing platform needs to allocate the endlessly emerging tasks to the resources scattered in different places for processing. However, this real-time scheduling problem in the cloud environment is more complicated than that in a traditional workshop because constraints, such as type matching, task precedence, resource occupation, and logistics duration, need to be met, and the internal manufacturing plan of providers must also be considered. Since the platform aggregates massive manufacturing resources to serve large-scale manufacturing tasks, the space of feasible solutions is huge, resulting in many conventional search algorithms no longer being applicable. In this paper, we considered resource allocation as the key procedure for real-time scheduling, and an ANN (Artificial Neural Network) based model is established to predict the task completion status for resource allocation among candidates. The trained ANN model has high prediction accuracy, and the ANN-based scheduling approach performs better than the preferred method in terms of the optimization objectives, including total cost, service satisfaction, and make-span. In addition, the proposed approach has potential in the application for smart manufacturing or Industry 4.0 because of its high response performance and good scalability.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Gilseung Ahn ◽  
Sun Hur

In cloud manufacturing, customers register customized requirements, and manufacturers provide appropriate services to complete the task. A cloud manufacturing manager establishes manufacturing schedules that determine the service provision time in a real-time manner as the requirements are registered in real time. In addition, customer satisfaction is affected by various measures such as cost, quality, tardiness, and reliability. Thus, multiobjective and real-time scheduling of tasks is important to operate cloud manufacturing effectively. In this paper, we establish a mathematical model to minimize tardiness, cost, quality, and reliability. Additionally, we propose an approach to solve the mathematical model in a real-time manner using a multiobjective genetic algorithm that includes chromosome representation, fitness function, and genetic operators. From the experimental results, we verify whether the proposed approach is effective and efficient.


Sign in / Sign up

Export Citation Format

Share Document