scholarly journals Fast Dual-Loop Nonlinear Receding Horizon Control for Energy Management in Hybrid Electric Vehicles

2019 ◽  
Vol 27 (3) ◽  
pp. 1060-1070 ◽  
Author(s):  
Johannes Buerger ◽  
Sebastian East ◽  
Mark Cannon
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3502
Author(s):  
Pierpaolo Polverino ◽  
Ivan Arsie ◽  
Cesare Pianese

Fuel consumption and emissions in parallel hybrid electric vehicles (HEVs) are directly linked to the way the load request to the wheels is managed between the internal combustion engine and the electric motor powered by the battery. A significant reduction in both consumption and emissions can be achieved by optimally controlling the power split on an entire driving mission (full horizon—FH). However, the entire driving path is often not predictable in real applications, hindering the fulfillment of the advantages gained through such an approach. An improvement can be achieved by exploiting more information available onboard, such as those derived from Advanced Driver Assistance Systems (ADAS) and vehicle connectivity (V2X). With this aim, the present work presents the design and verification, in a simulated environment, of an optimized controller for HEVs energy management, based on dynamic programming (DP) and receding horizon (RH) approaches. The control algorithm entails the partial knowledge of the driving mission, and its performance is assessed by evaluating fuel consumption related to a Worldwide harmonized Light vehicles Test Cycle (WLTC) under different control features (i.e., horizon length and update distance). The obtained results show a fuel consumption reduction comparable to that of the FH, with maximum drift from optimal consumption of less than 10%.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Author(s):  
Carlos Villarreal-Hernandez ◽  
Javier Loranca-Coutino ◽  
Omar F. Ruiz-Martinez ◽  
Jonathan C. Mayo-Maldonado ◽  
Jesus E. Valdez-Resendiz ◽  
...  

2014 ◽  
Vol 15 (3) ◽  
pp. 1145-1154 ◽  
Author(s):  
Viktor Larsson ◽  
Lars Johannesson Mardh ◽  
Bo Egardt ◽  
Sten Karlsson

Sign in / Sign up

Export Citation Format

Share Document