scholarly journals Probabilistic Topic Model for Context-Driven Visual Attention Understanding

2020 ◽  
Vol 30 (6) ◽  
pp. 1653-1667 ◽  
Author(s):  
Miguel-Angel Fernandez-Torres ◽  
Ivan Gonzalez-Diaz ◽  
Fernando Diaz-de-Maria
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hongcheng Zou ◽  
Ziling Wei ◽  
Jinshu Su ◽  
Baokang Zhao ◽  
Yusheng Xia ◽  
...  

Website fingerprinting (WFP) attack enables identifying the websites a user is browsing even under the protection of privacy-enhancing technologies (PETs). Previous studies demonstrate that most machine-learning attacks need multiple types of features as input, thus inducing tremendous feature engineering work. However, we show the other alternative. That is, we present Probabilistic Fingerprinting (PF), a new website fingerprinting attack that merely leverages one type of features. They are produced by using a mathematical model PWFP that combines a probabilistic topic model with WFP for the first time, due to a finding that a plain text and the sequence file generated from a traffic instance are essentially the same. Experimental results show that the proposed new features are more distinguishing than the existing features. In a closed-world setting, PF attains a better accuracy performance (99.79% at most) than prior attacks on various datasets gathered in the scenarios of Shadowsocks, SSH, and TLS, respectively. Besides, even when the number of training instances drops to as few as 4, PF still reaches an accuracy of above 90%. In the more realistic open-world setting, PF attains a high true positive rate (TPR) and Bayes detection rate (BDR), and a low false positive rate (FPR) in all evaluations, which outperforms the other attacks. These results highlight that it is meaningful and possible to explore new features to improve the accuracy of WFP attacks.


2015 ◽  
Vol 54 ◽  
pp. 169-188 ◽  
Author(s):  
Akira Kinoshita ◽  
Atsuhiro Takasu ◽  
Jun Adachi

Author(s):  
Qiqi Zhu ◽  
Yanfei Zhong ◽  
Liangpei Zhang

Topic modeling has been an increasingly mature method to bridge the semantic gap between the low-level features and high-level semantic information. However, with more and more high spatial resolution (HSR) images to deal with, conventional probabilistic topic model (PTM) usually presents the images with a dense semantic representation. This consumes more time and requires more storage space. In addition, due to the complex spectral and spatial information, a combination of multiple complementary features is proved to be an effective strategy to improve the performance for HSR image scene classification. But it should be noticed that how the distinct features are fused to fully describe the challenging HSR images, which is a critical factor for scene classification. In this paper, a semantic-feature fusion fully sparse topic model (SFF-FSTM) is proposed for HSR imagery scene classification. In SFF-FSTM, three heterogeneous features – the mean and standard deviation based spectral feature, wavelet based texture feature, and dense scale-invariant feature transform (SIFT) based structural feature are effectively fused at the latent semantic level. The combination of multiple semantic-feature fusion strategy and sparse based FSTM is able to provide adequate feature representations, and can achieve comparable performance with limited training samples. Experimental results on the UC Merced dataset and Google dataset of SIRI-WHU demonstrate that the proposed method can improve the performance of scene classification compared with other scene classification methods for HSR imagery.


2019 ◽  
Vol 15 (4) ◽  
pp. 57-70
Author(s):  
Marziea Rahimi ◽  
Morteza Zahedi ◽  
Hoda Mashayekhi ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document