scholarly journals Guest Editorial Introduction to the Special Issue on Recent Advances in Point Cloud Processing and Compression

2021 ◽  
Vol 31 (12) ◽  
pp. 4555-4560
Author(s):  
Zhu Li ◽  
Shan Liu ◽  
Frederic Dufaux ◽  
Li Li ◽  
Ge Li ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4569
Author(s):  
Joan R. Rosell-Polo ◽  
Eduard Gregorio ◽  
Jordi Llorens

In this editorial, we provide an overview of the content of the special issue on “Terrestrial Laser Scanning”. The aim of this Special Issue is to bring together innovative developments and applications of terrestrial laser scanning (TLS), understood in a broad sense. Thus, although most contributions mainly involve the use of laser-based systems, other alternative technologies that also allow for obtaining 3D point clouds for the measurement and the 3D characterization of terrestrial targets, such as photogrammetry, are also considered. The 15 published contributions are mainly focused on the applications of TLS to the following three topics: TLS performance and point cloud processing, applications to civil engineering, and applications to plant characterization.


2018 ◽  
Vol 12 (3) ◽  
pp. 327-327
Author(s):  
Hiroshi Masuda ◽  
Hiroaki Date

Recently, terrestrial laser scanners have been significantly improved in terms of accuracy, measurement distance, measurement speed, and resolution. They enable us to capture dense 3D point clouds of large-scale objects and fields, such as factories, engineering plants, large equipment, and transport ships. In addition, the mobile mapping system, which is a vehicle equipped with laser scanners and GPSs, can be used for capturing large-scale point clouds from a wide range of roads, buildings, and roadside objects. Large-scale point clouds are useful in a variety of applications, such as renovation and maintenance of facilities, engineering simulation, asset management, and 3D mapping. To realize these applications, new techniques must be developed for processing large-scale point clouds. So far, point processing has been studied mainly for relatively small objects in the field of computer-aided design and computer graphics. However, in recent years, the application areas of point clouds are not limited to conventional domains, but also include manufacturing, civil engineering, construction, transportation, forestry, and so on. This is because the state-of-the-art laser scanner can be used to represent large objects or fields as dense point clouds. We believe that discussing new techniques and applications related to large-scale point clouds beyond the boundaries of traditional academic fields is very important.This special issue addresses the latest research advances in large-scale point cloud processing. This covers a wide area of point processing, including shape reconstruction, geometry processing, object recognition, registration, visualization, and applications. The papers will help readers explore and share their knowledge and experience in technologies and development techniques.All papers were refereed through careful peer reviews. We would like to express our sincere appreciation to the authors for their submissions and to the reviewers for their invaluable efforts for ensuring the success of this special issue.


2021 ◽  
Vol 27 (1) ◽  
pp. 1-3
Author(s):  
Hugo E. Hernandez-Figueroa ◽  
Mona Jarrahi ◽  
Yungui Ma ◽  
Paolo Biagioni ◽  
Andrey E. Miroshnichenko

2021 ◽  
Vol 13 (10) ◽  
pp. 1985
Author(s):  
Emre Özdemir ◽  
Fabio Remondino ◽  
Alessandro Golkar

With recent advances in technologies, deep learning is being applied more and more to different tasks. In particular, point cloud processing and classification have been studied for a while now, with various methods developed. Some of the available classification approaches are based on specific data source, like LiDAR, while others are focused on specific scenarios, like indoor. A general major issue is the computational efficiency (in terms of power consumption, memory requirement, and training/inference time). In this study, we propose an efficient framework (named TONIC) that can work with any kind of aerial data source (LiDAR or photogrammetry) and does not require high computational power while achieving accuracy on par with the current state of the art methods. We also test our framework for its generalization ability, showing capabilities to learn from one dataset and predict on unseen aerial scenarios.


Sign in / Sign up

Export Citation Format

Share Document