scholarly journals Real-Time Bi-Directional Electric Vehicle Charging Control with Distribution Grid Implementation

Author(s):  
Yingqi Xiong ◽  
Behnam Khakit ◽  
Chi-Cheng Chu ◽  
Rajit Gadh
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1370
Author(s):  
Héricles Eduardo Oliveira Farias ◽  
Camilo Alberto Sepulveda Rangel ◽  
Leonardo Weber Stringini ◽  
Luciane Neves Canha ◽  
Daniel Pegoraro Bertineti ◽  
...  

This paper proposes a flexible framework for scheduling and real time operation of electric vehicle charging stations (EVCS). The methodology applies a multi-objective evolutionary particle swarm optimization algorithm (EPSO) for electric vehicles (EVs) scheduling based on a day-ahead scenario. Then, real time operation is managed based on a rule-based (RB) approach. Two types of consumer were considered: EV owners with a day-ahead request for charging (scheduled consumers, SCh) and non-scheduling users (NSCh). EPSO has two main objectives: cost reduction and reduce overloading for high demand in grid. The EVCS has support by photovoltaic generation (PV), battery energy storage systems (BESS), and the distribution grid. The method allows the selection between three types of charging, distributing it according to EV demand. The model estimates SC remaining state of charge (SoC) for arriving to EVCS and then adjusts the actual difference by the RB. The results showed a profit for EVCS by the proposed technique. The proposed EPSO and RB have a fast solution to the problem that allows practical implementation.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3905
Author(s):  
Muhandiram Arachchige Subodha Tharangi Ireshika ◽  
Ruben Lliuyacc-Blas ◽  
Peter Kepplinger

If left uncontrolled, electric vehicle charging poses severe challenges to distribution grid operation. Resulting issues are expected to be mitigated by charging control. In particular, voltage-based charging control, by relying only on the local measurements of voltage at the point of connection, provides an autonomous communication-free solution. The controller, attached to the charging equipment, compares the measured voltage to a reference voltage and adapts the charging power using a droop control characteristic. We present a systematic study of the voltage-based droop control method for electric vehicles to establish the usability of the method for all the currently available residential electric vehicle charging possibilities considering a wide range of electric vehicle penetrations. Voltage limits are evaluated according to the international standard EN50160, using long-term load flow simulations based on a real distribution grid topology and real load profiles. The results achieved show that the voltage-based droop controller is able to mitigate the under voltage problems completely in distribution grids in cases either deploying low charging power levels or exhibiting low penetration rates. For high charging rates and high penetrations, the control mechanism improves the overall voltage profile, but it does not remedy the under voltage problems completely. The evaluation also shows the controller’s ability to reduce the peak power at the transformer and indicates the impact it has on users due to the reduction in the average charging rates. The outcomes of the paper provide the distribution grid operators an insight on the voltage-based droop control mechanism for the future grid planning and investments.


2021 ◽  
Vol 292 ◽  
pp. 126066
Author(s):  
Ridoy Das ◽  
Yue Wang ◽  
Krishna Busawon ◽  
Ghanim Putrus ◽  
Myriam Neaimeh

Sign in / Sign up

Export Citation Format

Share Document