Total Transfer Capability Analysis in Power System including Large-scale Wind Farms

Author(s):  
Wang Xinggang ◽  
Sun Wei ◽  
Wang Chengshan
Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2375
Author(s):  
Yuwei Zhang ◽  
Wenying Liu ◽  
Yue Huan ◽  
Qiang Zhou ◽  
Ningbo Wang

The rapidly increasing penetration of wind power into sending-side systems makes the wind power curtailment problem more severe. Enhancing the total transfer capability (TTC) of the transmission channel allows more wind power to be delivered to the load center; therefore, the curtailed wind power can be reduced. In this paper, a new method is proposed to enhance TTC, which works by optimizing the day-ahead thermal generation schedules. First, the impact of thermal generation plant/unit commitment on TTC is analyzed. Based on this, the day-ahead thermal generation scheduling rules to enhance TTC are proposed herein, and the corresponding optimization models are established and solved. Then, the optimal day-ahead thermal generation scheduling method to enhance TTC is formed. The proposed method was validated on the large-scale wind power base sending-side system in Gansu Province in China; the results indicate that the proposed method can significantly enhance TTC, and therefore, reduce the curtailed wind power.


2013 ◽  
Vol 448-453 ◽  
pp. 2535-2539
Author(s):  
Jun Cheng ◽  
Qiang Yang ◽  
Tao Zhu ◽  
Ai Meng Wang ◽  
Xue Feng Hu ◽  
...  

With the scale of the wind farm growing fast, its impact on the power system has become increasingly apparent. So the research has a significant meaning on the characteristics of dynamic stability of the power system which contains wind farms, and the stable operation of the large area interconnected power grid. In this paper it realized the application of the double-fed wind turbine grid model by using power system analysis software PSD-BPA. The analysis of the generator power Angle curve which indicate the state after the failure of N-1 shows as follows: with the wind farms integration on the grid, the damping ratio is decreased slightly but little change after the system failure of N-1, which is still live up to the standard of grid stability.


2013 ◽  
Vol 805-806 ◽  
pp. 393-396
Author(s):  
Zhen Yu Xu ◽  
Zhen Qiao ◽  
Qian He ◽  
Xu Zhang ◽  
Jing Qi Su

With the penetration of wind energy is becoming higher and higher in power grid, it is very important to investigate the impact of wind generations on small signal stability. In this paper, a complete small signal model of wind turbine with direct-drive permanent magnet generator is built to study the impact of large-scale wind farms on the small signal stability of power system. By means of simulation and eigenvalue analysis, an actual power system is investigated, and the damping characteristic of power grid under different wind power penetration is discussed.


2013 ◽  
Vol 765-767 ◽  
pp. 2579-2585
Author(s):  
Min Jing Yang ◽  
Yan Li ◽  
Jin Yu Wen ◽  
Chun Fang Liu ◽  
Min Jie Zhu ◽  
...  

The high penetration of doubly-fed induction generators (DFIGs) entails a change in dynamics and operational characteristics of the power system, thus this paper investigates the small signal stability of the large-scale wind farm with DFIGs. The GE 1.5MW DFIG is modeled in power system analysis software package (PSASP), and a large-scale wind farm with DFIGs is established. Then, the two-area test system with four generators is applied to assess the effect of the large wind farm on power system inter-area oscillatory mode in which the penetration and the installation site of the wind farm are considered. Finally, the simulation results indicate that abundant penetration of DFIG-based wind power will improve the inter-area oscillatory, and the integration of wind farms with DFIGs in the receiving area makes the inter-area mode highly damped.


Sign in / Sign up

Export Citation Format

Share Document