Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction

2002 ◽  
Vol 40 (10) ◽  
pp. 2331-2338 ◽  
Author(s):  
L.M. Bruce ◽  
C.H. Koger ◽  
Jiang Li
Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3215
Author(s):  
Mohammed Balubaid ◽  
Mohammad Amir Sattari ◽  
Osman Taylan ◽  
Ahmed A. Bakhsh ◽  
Ehsan Nazemi

This paper presents a methodology to monitor the liquid petroleum products which pass through transmission pipes. A simulation setup consisting of an X-ray tube, a detector, and a pipe was established using a Monte Carlo n-particle X-version transport code to investigate a two-by-two mixture of four different petroleum products, namely, ethylene glycol, crude oil, gasoline, and gasoil, in deferent volumetric ratios. After collecting the signals of each simulation, discrete wavelet transform (DWT) was applied as the feature extraction system. Then, the statistical feature, named the standard deviation, was calculated from the approximation of the fifth level, and the details of the second to fifth level provide appropriate inputs for neural network training. Three multilayer perceptron neural networks were utilized to predict the volume ratio of three types of petroleum products, and the volume ratio of the fourth product could easily be obtained from the results of the three presented networks. Finally, a root mean square error of less than 1.77 was obtained in predicting the volume ratio, which was much more accurate than in previous research. This high accuracy was due to the use of DWT for feature extraction.


2021 ◽  
Vol 13 (22) ◽  
pp. 4643
Author(s):  
Jinhua Liu ◽  
Jianli Ding ◽  
Xiangyu Ge ◽  
Jingzhe Wang

Controlling and managing surface source pollution depends on the rapid monitoring of total nitrogen in water. However, the complex factors affecting water quality (plant shading and suspended matter in water) make direct estimation extremely challenging. Considering the spectral response mechanisms of emergent plants, we coupled discrete wavelet transform (DWT) and fractional order discretization (FOD) techniques with three machine learning models (random forest (RF), bagging algorithm (bagging), and eXtreme Gradient Boosting (XGBoost)) to mine this potential spectral information. A total of 567 models were developed, and airborne hyperspectral data processed with various DWT scales and FOD techniques were compared. The effective information in the hyperspectral reflectance data were better emphasized after DWT processing. After DWT processing the original spectrum (OR), its sensitivity to TN in water was maximally improved by 0.22, and the correlation between FOD and TN in water was optimally increased by 0.57. The transformed spectral information enhanced the TN model accuracy, especially for FOD after DWT. For RF, 82% of the model R2 values improved by 0.02~0.72 compared to the model using FOD spectra; 78.8% of the bagging values improved by 0.01~0.53 and 65.0% of the XGBoost values improved by 0.01~0.64. The XGBoost model with DWT coupled with grey relation analysis (GRA) yielded the best estimation accuracy, with the highest precision of R2 = 0.91 for L6. In conclusion, appropriately scaled DWT analysis can substantially improve the accuracy of extracting TN from UAV hyperspectral images. These outcomes may facilitate the further development of accurate water quality monitoring in sophisticated global waters from drone or satellite hyperspectral data.


Sign in / Sign up

Export Citation Format

Share Document