New Retrieval Algorithm for Deriving Land Surface Temperature From Geostationary Orbiting Satellite Observations

2014 ◽  
Vol 52 (2) ◽  
pp. 819-828 ◽  
Author(s):  
Li Fang ◽  
Yunyue Yu ◽  
Hui Xu ◽  
Donglian Sun
2020 ◽  
Vol 12 (16) ◽  
pp. 2573
Author(s):  
Si-Bo Duan ◽  
Xiao-Jing Han ◽  
Cheng Huang ◽  
Zhao-Liang Li ◽  
Hua Wu ◽  
...  

Land surface temperature (LST) is an important variable in the physics of land–surface processes controlling the heat and water fluxes over the interface between the Earth’s surface and the atmosphere. Space-borne remote sensing provides the only feasible way for acquiring high-precision LST at temporal and spatial domain over the entire globe. Passive microwave (PMW) satellite observations have the capability to penetrate through clouds and can provide data under both clear and cloud conditions. Nonetheless, compared with thermal infrared data, PMW data suffer from lower spatial resolution and LST retrieval accuracy. Various methods for estimating LST from PMW satellite observations were proposed in the past few decades. This paper provides an extensive overview of these methods. We first present the theoretical basis for retrieving LST from PMW observations and then review the existing LST retrieval methods. These methods are mainly categorized into four types, i.e., empirical methods, semi-empirical methods, physically-based methods, and neural network methods. Advantages, limitations, and assumptions associated with each method are discussed. Prospects for future development to improve the performance of LST retrieval methods from PMW satellite observations are also recommended.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2987 ◽  
Author(s):  
Jiancan Tan ◽  
Nusseiba NourEldeen ◽  
Kebiao Mao ◽  
Jiancheng Shi ◽  
Zhaoliang Li ◽  
...  

A convolutional neural network (CNN) algorithm was developed to retrieve the land surface temperature (LST) from Advanced Microwave Scanning Radiometer 2 (AMSR2) data in China. Reference data were selected using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product to overcome the problem related to the need for synchronous ground observation data. The AMSR2 brightness temperature (TB) data and MODIS surface temperature data were randomly divided into training and test datasets, and a CNN was constructed to simulate passive microwave radiation transmission to invert the surface temperature. The twelve V/H channel combinations (7.3, 10.65, 18.7, 23.8, 36.5, 89 GHz) resulted in the most stable and accurate CNN retrieval model. Vertical polarizations performed better than horizontal polarizations; however, because CNNs rely heavily on large amounts of data, the combination of vertical and horizontal polarizations performed better than a single polarization. The retrievals in different regions indicated that the CNN accuracy was highest over large bare land areas. A comparison of the retrieval results with ground measurement data from meteorological stations yielded R2 = 0.987, RMSE = 2.69 K, and an average relative error of 2.57 K, which indicated that the accuracy of the CNN LST retrieval algorithm was high and the retrieval results can be applied to long-term LST sequence analysis in China.


Sign in / Sign up

Export Citation Format

Share Document