north china plain
Recently Published Documents


TOTAL DOCUMENTS

1556
(FIVE YEARS 604)

H-INDEX

76
(FIVE YEARS 13)

2022 ◽  
Vol 266 ◽  
pp. 105958
Author(s):  
Lei Li ◽  
Huizheng Che ◽  
Xindan Zhang ◽  
Cheng Chen ◽  
Xingfeng Chen ◽  
...  

2022 ◽  
Vol 113 ◽  
pp. 190-203
Author(s):  
Xiaoyu Hu ◽  
Gan Yang ◽  
Yiliang Liu ◽  
Yiqun Lu ◽  
Yuwei Wang ◽  
...  

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 176
Author(s):  
Suying Chen ◽  
Peipei Yang ◽  
Yuming Zhang ◽  
Wenxu Dong ◽  
Chunsheng Hu ◽  
...  

Current tillage practices in the important winter wheat–summer maize double cropping system of the North China Plain are under debate because of negative effects on soil quality and crop yield. Therefore, a long-term experiment was conducted from 2001 to 2018 to determine the effects of soil conservation practices on crop yield and soil quality. The treatments were imposed following maize harvest and prior wheat seeding, and were defined as follows: (1) moldboard ploughing (0–20 cm) following maize straw removal (CK); (2) moldboard ploughing (0–20 cm) following maize straw return (CT); (3) rotary tillage following maize straw return (RT); and (4) no tillage with maize straw covering the soil surface (NT). Wheat straw was chopped and spread on the soil in all treatments and maize seeded without prior tillage. Wheat yields were higher in CT than RT and NT treatments (p < 0.05); NT had 18% lower wheat yields than CT. No significant differences were found between treatments in summer maize yields. The soil organic carbon (SOC) content in the surface layer (0–5 cm) was higher in NT and RT compared to CT and CK. However, SOC content in the 10–20 cm and 20–30 cm layers was lower in NT and RT compared to CT and CK. Similarly, available phosphorus in the surface soil was higher in NT and RT than in CT and CK. but the opposite was true for the lower soil layers. SOC stocks (0–30 cm) increased in all treatments, and were initially faster in NT and RT than in CT and CK. However, SOC stocks were higher in CT than in other treatments at the end of the experiment. This finding indicates that no tillage and reduced tillage decreased both wheat yields and soil C sequestration over time; it also indicates that CT was the most robust in terms of crop yields and soil C sequestration.


2022 ◽  
Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Yao He ◽  
...  

Abstract. Atmospheric processes, including both primary emissions and secondary formation, may exert complex effects on aerosol hygroscopicity, which is of significant importance in understanding and quantifying the effect of aerosols on climate and human health. In order to explore the influence of local emissions and secondary formation processes on aerosol hygroscopicity, we investigated the hygroscopic properties of submicron aerosol particles at a rural site in the North China Plain (NCP) in winter 2018. This was conducted by simultaneous measurements of aerosol hygroscopicity and chemical composition, using a self-assembled hygroscopic tandem differential mobility analyzer (HTDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM). The hygroscopicity results showed that the particles during the entire campaign were mainly externally mixed, with a more hygroscopic (MH) mode and a less hygroscopic (LH) particles mode. The mean hygroscopicity parameter values (κmean) derived from hygroscopicity measurements for particles at 60, 100, 150, and 200 nm were 0.16, 0.18, 0.16, and 0.15, respectively. During this study, we classified two distinct episodes with different RH/T conditions, indicative of different primary emissions and secondary formation processes. It was observed that aerosols at all measured sizes were more hygroscopic under the high RH (HRH) episode than those under the low RH (LRH) episode. During the LRH, κ decreased with increasing particle size, which may be explained by the enhanced domestic heating at low temperature, causing large emissions of non- or less-hygroscopic primary aerosols. This is particularly obvious for 200 nm particles, with a dominant number fraction (> 50 %) of LH mode particles. Using O : C-dependent hygroscopic parameters of secondary organic compounds (κSOA), closure analysis between the HTDMA_measured κ and the ACSM_derived κ was carried out. The results showed that κSOA under the LRH episode was less sensitive to the changes in organic oxidation level, while κSOA under the HRH had a relatively stronger dependency on the organic O : C. This feature suggests that the different sources and aerosol evolution processes, partly resulting from the variation in atmospheric RH/T conditions, may lead to significant changes in aerosol chemical composition, which will further influence their corresponding physical properties.


2022 ◽  
Vol 14 (1) ◽  
pp. 214
Author(s):  
Chunjiao Wang ◽  
Ting Wang ◽  
Pucai Wang ◽  
Wannan Wang

The TROPOspheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor satellite has been used to detect the atmospheric environment since 2017, and it is of great significance to investigate the accuracy of its products. In this work, we present comparisons between TROPOMI tropospheric NO2 and total SO2 products against ground-based MAX-DOAS at a single site (Xianghe) and OMI products over a seriously polluted region (North China Plain, NCP) in China. The results show that both NO2 and SO2 data from three datasets exhibit a similar tendency and seasonality. In addition, TROPOMI tropospheric NO2 columns are generally underestimated compared with collocated MAX-DOAS and OMI data by about 30–60%. In contrast to NO2, the monthly average SO2 retrieved from TROPOMI is larger than MAX-DOAS and OMI, with a mean bias of 2.41 (153.8%) and 2.17 × 1016 molec cm−2 (120.7%), respectively. All the results demonstrated that the TROPOMI NO2 as well as the SO2 algorithms need to be further improved. Thus, to ensure reliable analysis in NCP area, a correction method has been proposed and applied to TROPOMI Level 3 data. The revised datasets agree reasonably well with OMI observations (R > 0.95 for NO2, and R > 0.85 for SO2) over the NCP region and have smaller mean biases with MAX-DOAS. In the application during COVID-19 pandemic, it showed that the NO2 column in January-April 2020 decreased by almost 25–45% compared to the same period in 2019 due to the lockdown for COVID-19, and there was an apparent rebound of nearly 15–50% during 2021. In contrast, a marginal change of the corresponding SO2 is revealed in the NCP region. It signifies that short-term control measures are expected to have more effects on NO2 reduction than SO2; conversely, we need to recognize that although the COVID-19 lockdown measures improved air quality in the short term, the pollution status will rebound to its previous level once industrial and human activities return to normal.


2022 ◽  
Author(s):  
Wen-Xuan Liu ◽  
Wen-Sheng Liu ◽  
Mu-Yu Yang ◽  
Yu-Xin Wei ◽  
Zhe Chen ◽  
...  

Abstract The ever-increasing trend of greenhouse gas (GHGs) emissions is accelerating global warming and threatening food security. Environmental benefits and sustainable food production must be pursued locally and globally. Thus, a field experiment was conducted in 2015 to understand how to balance the trade-offs between agronomic productivity and environment quality in the North China Plain (NCP). Eight treatments consisted of two factors, i.e., (i) tillage practices: rotary tillage (RT) and no-till (NT), and (ii) cropping sequences (CS): maize-wheat-soybean-wheat (MWSW), soybean-wheat-maize-wheat (SWMW), soybean-wheat (SW), and maize-wheat (MW). The economic and environmental benefits were evaluated by multiple indicators including the carbon footprint (CF), maize equivalent economic yield (MEEY), energy yield (EY), carbon sustainability index (CSI), etc. Compared with NT, RT increased the EY and MEEY, but emitted 9.4% higher GHGs. Among different CSs, no significant reduction was observed in CF. The lowest (2.0 Mg CO2-eq ha-1 yr-1) and the highest (5.6 Mg CO2-eq ha-1 yr-1) CF values were observed under MW and SWMW, respectively. However, CSs with soybean enhanced MEEY and the net revenue due to its higher price compared to that of MW. Although the highest CSI was observed under RT-MW, soybean-based crop rotation could offset the decline in CSI under NT when compared to that for RT. These findings suggest that conservation agriculture (CA) could enhance the balance in trade-offs between economic and environmental benefits. Additional research is needed on how to achieve high crop production by establishing a highly efficient conservation agriculture system in the NCP.


2022 ◽  
pp. 112671
Author(s):  
Aifang Gao ◽  
Junyi Wang ◽  
James Poetzscher ◽  
Shaorong Li ◽  
Boyi Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document