the north china plain
Recently Published Documents


TOTAL DOCUMENTS

1402
(FIVE YEARS 552)

H-INDEX

75
(FIVE YEARS 13)

2022 ◽  
Vol 113 ◽  
pp. 190-203
Author(s):  
Xiaoyu Hu ◽  
Gan Yang ◽  
Yiliang Liu ◽  
Yiqun Lu ◽  
Yuwei Wang ◽  
...  

2022 ◽  
Vol 276 ◽  
pp. 108366
Author(s):  
He Xiao ◽  
Harold M. van Es ◽  
Joseph P. Amsili ◽  
Qianqian Shi ◽  
Jingbo Sun ◽  
...  

2022 ◽  
Author(s):  
Xueli Liu ◽  
Liang Ran ◽  
Weili Lin ◽  
Xiaobin Xu ◽  
Zhiqiang Ma ◽  
...  

Abstract. Strict air pollution control strategies have been implemented in recent decades in the North China Plain (NCP), previously one of the most polluted regions in the world, and have resulted in considerable changes in emissions of air pollutants. However, little is so far known about the long-term trends of the regional background level of NOx and SO2, along with the increase and decrease processes of regional emissions. In this study, the seasonal and diurnal variations of NOx and SO2 as well as their long-term trends at a regional background station in the NCP were characterized from 2004 to 2016. On average, SO2 and NOx mixing ratios were 5.7 ± 8.4 ppb and 14.2 ± 12.4 ppb, respectively. The seasonal variations in SO2 and NOx mixing ratios showed a similar pattern with a peak in winter and a valley in summer. However, the diurnal variations in SO2 and NOx mixing ratios greatly differed for all seasons, indicating different sources for SO2 and NOx. Overall, the annual mean SO2 exhibited a significant decreasing trend of ‒6.1 % yr−1 (R = −0.84, P < 0.01) from 2004 to 2016, which is very close to −6.3 % yr−1 of the annual SO2 emission in Beijing, and a greater decreasing trend of −7.4 % yr−1 (R = −0.95, P < 0.01) from 2008 to 2016. The annual mean of NOx showed a fluctuating rise of +3.4 % yr−1 (R = 0.38, P = 0.40) from 2005 to 2010, reaching the peak value (16.9 ppb) in 2010, and then exhibited an extremely significant fluctuating downward trend of −4.5 % yr−1 (R = 0.95, P < 0.01) from 2010 to 2016. After 2010, the annual mean NOx mixing ratios correlated significantly (R = 0.94, P < 0.01) with the annual NOx emission in North China. The decreasing rate (−4.8 % yr−1, R = −0.92, P < 0.01) of the annual mean NOx mixing ratios from 2011 to 2016 at SDZ are lower than the one (−8.8 % yr−1, R = −0.94, P < 0.01) for the annual NOx emission in the NCP and (−9.0 % yr−1, R = −0.96, P < 0.01) in Beijing. It indicated that surface NOx mixing ratios at SDZ had weaker influence than SO2 by the emission reduction in Beijing and its surrounding areas in the NCP. The increase in the amount of motor vehicles led to an increase in traffic emissions for NOx. This study supported conclusions from previous studies that the measures taken for controlling NOx and SO2 in the NCP in the past decades were generally successful. However, NOx emission control should be strengthened in the future.


2022 ◽  
Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Yao He ◽  
...  

Abstract. Atmospheric processes, including both primary emissions and secondary formation, may exert complex effects on aerosol hygroscopicity, which is of significant importance in understanding and quantifying the effect of aerosols on climate and human health. In order to explore the influence of local emissions and secondary formation processes on aerosol hygroscopicity, we investigated the hygroscopic properties of submicron aerosol particles at a rural site in the North China Plain (NCP) in winter 2018. This was conducted by simultaneous measurements of aerosol hygroscopicity and chemical composition, using a self-assembled hygroscopic tandem differential mobility analyzer (HTDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM). The hygroscopicity results showed that the particles during the entire campaign were mainly externally mixed, with a more hygroscopic (MH) mode and a less hygroscopic (LH) particles mode. The mean hygroscopicity parameter values (κmean) derived from hygroscopicity measurements for particles at 60, 100, 150, and 200 nm were 0.16, 0.18, 0.16, and 0.15, respectively. During this study, we classified two distinct episodes with different RH/T conditions, indicative of different primary emissions and secondary formation processes. It was observed that aerosols at all measured sizes were more hygroscopic under the high RH (HRH) episode than those under the low RH (LRH) episode. During the LRH, κ decreased with increasing particle size, which may be explained by the enhanced domestic heating at low temperature, causing large emissions of non- or less-hygroscopic primary aerosols. This is particularly obvious for 200 nm particles, with a dominant number fraction (> 50 %) of LH mode particles. Using O : C-dependent hygroscopic parameters of secondary organic compounds (κSOA), closure analysis between the HTDMA_measured κ and the ACSM_derived κ was carried out. The results showed that κSOA under the LRH episode was less sensitive to the changes in organic oxidation level, while κSOA under the HRH had a relatively stronger dependency on the organic O : C. This feature suggests that the different sources and aerosol evolution processes, partly resulting from the variation in atmospheric RH/T conditions, may lead to significant changes in aerosol chemical composition, which will further influence their corresponding physical properties.


Sign in / Sign up

Export Citation Format

Share Document