Super-Resolution ISAR Imaging for Maneuvering Target Based on Deep-Learning-Assisted Time-Frequency Analysis

Author(s):  
Jiang Qian ◽  
Shaoyin Huang ◽  
Lu Wang ◽  
Guoan Bi ◽  
Xiaobo Yang
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 172692-172706
Author(s):  
Peng Cheng ◽  
Zhencheng Chen ◽  
Quanzhong Li ◽  
Qiong Gong ◽  
Jianming Zhu ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jason Kolodziej ◽  
Jacob Chesnes

This paper presents a vibration-based condition monitoring approach for early assessment of valve wear in an industrial reciprocating compressor. Valve seat  wear is a common fault mode that is caused by repeated impact and accelerated by chatter. Seeded faults consistent with valve seat wear are installed on the head-side discharge valves of a Dresser-Rand ESH-1 industrial reciprocating compressor. Due to the cyclostationary nature of these units a time-frequency analysis is employed where targeted crank angle positions can isolate externally mounted, non-invasive, vibration measurements. A region-of-interest (ROI) is then extracted from the time-frequency analysis and used to train a suitably sized convolutional neural network (CNN). The proposed deep learning method is then compared against a similarly trained discriminant classifier using the same ROIs where features are extracted using texture and shape image statistics. Both methods achieve > 90% success with the CNN classification strategy nearing a perfect result.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 676 ◽  
Author(s):  
Bo Zang ◽  
Mingzhe Zhu ◽  
Xianda Zhou ◽  
Lu Zhong

In inverse synthetic aperture radar (ISAR) imaging, time-frequency analysis is the basic method for processing echo signals, which are reflected by the results of time-frequency analysis as each component changes over time. In the time-frequency map, a target’s rigid body components will appear as a series of single-frequency signals in the low-frequency region, and the micro-Doppler components generated by the target’s moving parts will be distributed in the high-frequency region with obvious frequency modulation. Among various time-frequency analysis methods, S-transform is especially suitable for analyzing these radar echo signals with micro-Doppler (m-D) components because of its multiresolution characteristics. In this paper, S-transform and the corresponding synchrosqueezing method are used to analyze the ISAR echo signal and perform imaging. Synchrosqueezing is a post-processing method for the time-frequency analysis result, which could retain most merits of S-transform while significantly improving the readability of the S-transformation result. The results of various simulations and actual data will show that S-transform is highly matched with the echo signal for ISAR imaging: the better frequency-domain resolution at low frequencies can concentrate the energy of the rigid body components in the low-frequency region, and better time resolution at high frequencies can better describe the transformation of the m-D component over time. The combination with synchrosqueezing also significantly improves the effect of time-frequency analysis and final imaging, and alleviates the shortcomings of the original S-transform. These results will be able to play a role in subsequent work like feature extraction and parameter estimation.


Sign in / Sign up

Export Citation Format

Share Document