scholarly journals Toward the Detection and Imaging of Ocean Microplastics With a Spaceborne Radar

Author(s):  
Madeline C. Evans ◽  
Christopher S. Ruf
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2466
Author(s):  
Qingwen Rao ◽  
Guanjun Xu ◽  
Wangchen Mao

In this paper, the detection of the lunar surface soil permittivity with megahertz electromagnetic (EM) waves by spaceborne radar is studied based on the EM scattering theory, the Boltzmann–Shukla equations, and the improved scattering matrix method (ISMM). The reflection characteristics of the lunar surface soil subject to megahertz waves are analyzed through the EM scattering theory and expressed by the lunar surface soil permittivity. Then, the lunar ionosphere is assumed to be composed of dusty plasma, and its EM characteristics are described with the Boltzmann–Shukla equations. Finally, the transmission and reflection characteristics of the propagation of EM waves in the lunar ionosphere are numerically calculated with ISMM. Thus, the complex permittivity of lunar surface soil is obtained. In addition, the effects of detection environment situations, such as the lunar illumination intensity, characteristics of the lunar dust and dust charging process in the lunar ionosphere, on the amplitude and phase of EM waves are also investigated in this study. The simulation results show that an EM wave at a high frequency induces a strong effective wave with a stable phase shift and a significantly small interferential wave. Moreover, the lunar illumination is more effective under EM waves in low frequency bands; the characteristics of the lunar dust have a notable influence on the transmission and absorption coefficients of the effective waves. These conclusions help in real applications involving the detection of the lunar surface soil permittivity by spaceborne radar in various lunar environments.


2015 ◽  
Vol 20 (2) ◽  
pp. 20-31 ◽  
Author(s):  
A. Ya. Matveev ◽  
◽  
A. A. Kubryakov ◽  
A. G. Boev ◽  
D. M. Bychkov ◽  
...  

2015 ◽  
Vol 32 (12) ◽  
pp. 2281-2296 ◽  
Author(s):  
Robert Meneghini ◽  
Hyokyung Kim ◽  
Liang Liao ◽  
Jeffrey A. Jones ◽  
John M. Kwiatkowski

AbstractIt has long been recognized that path-integrated attenuation (PIA) can be used to improve precipitation estimates from high-frequency weather radar data. One approach that provides an estimate of this quantity from airborne or spaceborne radar data is the surface reference technique (SRT), which uses measurements of the surface cross section in the presence and absence of precipitation. Measurements from the dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement (GPM) satellite afford the first opportunity to test the method for spaceborne radar data at Ka band as well as for the Ku-band–Ka-band combination.The study begins by reviewing the basis of the single- and dual-frequency SRT. As the performance of the method is closely tied to the behavior of the normalized radar cross section (NRCS or σ0) of the surface, the statistics of σ0 derived from DPR measurements are given as a function of incidence angle and frequency for ocean and land backgrounds over a 1-month period. Several independent estimates of the PIA, formed by means of different surface reference datasets, can be used to test the consistency of the method since, in the absence of error, the estimates should be identical. Along with theoretical considerations, the comparisons provide an initial assessment of the performance of the single- and dual-frequency SRT for the DPR. The study finds that the dual-frequency SRT can provide improvement in the accuracy of path attenuation estimates relative to the single-frequency method, particularly at Ku band.


Author(s):  
Liu Bo Liu Bo ◽  
Yin Jianfeng Yin Jianfeng ◽  
Bian Mingming Bian Mingming

Author(s):  
Antonio De Maio ◽  
Marco Maffei ◽  
Augusto Aubry ◽  
Alfonso Farina

2019 ◽  
Vol 97 (6) ◽  
pp. 1059-1073 ◽  
Author(s):  
Jingyu WANG ◽  
Robert. A. HOUZE, Jr. ◽  
Jiwen FAN ◽  
Stacy. R. BRODZIK ◽  
Zhe FENG ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 679-696 ◽  
Author(s):  
Nicholas J. Roberts ◽  
Bernhard T. Rabus ◽  
John J. Clague ◽  
Reginald L. Hermanns ◽  
Marco-Antonio Guzmán ◽  
...  

Abstract. We characterize and compare creep preceding and following the complex 2011 Pampahasi landslide (∼40 Mm3±50 %) in the city of La Paz, Bolivia, using spaceborne radar interferometry (InSAR) that combines displacement records from both distributed and point scatterers. The failure remobilized deposits of an ancient complex landslide in weakly cemented, predominantly fine-grained sediments and affected ∼1.5 km2 of suburban development. During the 30 months preceding failure, about half of the toe area was creeping at 3–8 cm a−1 and localized parts of the scarp area showed displacements of up to 14 cm a−1. Changes in deformation in the 10 months following the landslide demonstrate an increase in slope activity and indicate that stress redistribution resulting from the discrete failure decreased stability of parts of the slope. During that period, most of the landslide toe and areas near the head scarp accelerated, respectively, to 4–14 and 14 cm a−1. The extent of deformation increased to cover most, or probably all, of the 2011 landslide as well as adjacent parts of the slope and plateau above. The InSAR-measured displacement patterns, supplemented by field observations and optical satellite images, reveal complex slope activity; kinematically complex, steady-state creep along pre-existing sliding surfaces accelerated in response to heavy rainfall, after which slightly faster and expanded steady creeping was re-established. This case study demonstrates that high-quality ground-surface motion fields derived using spaceborne InSAR can help to characterize creep mechanisms, quantify spatial and temporal patterns of slope activity, and identify isolated small-scale instabilities; such details are especially useful where knowledge of landslide extent and activity is limited. Characterizing slope activity before, during, and after the 2011 Pampahasi landslide is particularly important for understanding landslide hazard in La Paz, half of which is underlain by similar large paleolandslides.


Sign in / Sign up

Export Citation Format

Share Document