measured displacement
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 28)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
pp. 511
Author(s):  
Filipe Conceição ◽  
Martin Lewis ◽  
Hernâni Lopes ◽  
Elza M. M. Fonseca

This study aims to comprehensively assess the accuracy and precision of five different devices and by incorporating a variety of analytical approaches for measuring countermovement jump height: Qualisys motion system; Force platform; Ergojump; an Accelerometer, and self-made Abalakow jump belt. Twenty-seven male and female physical education students (23.5 ± 3.8 years; height 170 ± 9.1 cm and body mass 69.1 ± 11.4 kg) performed three countermovement jumps simultaneously measured using five devices. The 3D measured displacement obtained through the Qualisys device was considered in this study as the reference value. The best accuracy (difference from 3D measured displacement) and precision (standard deviation of differences) for countermovement jump measurement was found using the Abalakow jump belt (0.8 ± 14.7 mm); followed by the Force platform when employing a double integration method (1.5 ± 13.9 mm) and a flight-time method employed using Qualisys motion system data (6.1 ± 17.1 mm). The least accuracy was obtained for the Ergojump (−72.9 mm) employing its analytical tools and then for the accelerometer and Force platform using flight time approximations (−52.8 mm and −45.3 mm, respectively). The worst precision (±122.7 mm) was obtained through double integration of accelerometer acceleration data. This study demonstrated that jump height measurement accuracy is both device and analytical-approach-dependent and that accuracy and precision in jump height measurement are achievable with simple, inexpensive equipment such as the Abalakow jump belt.


Author(s):  
Bo Wang ◽  
Chen Sun ◽  
Keming Zhang ◽  
Jubing Chen

Abstract As a representative type of outlier, the abnormal data in displacement measurement often inevitably occurred in full-field optical metrology and significantly affected the further evaluation, especially when calculating the strain field by differencing the displacement. In this study, an outlier removal method is proposed which can recognize and remove the abnormal data in optically measured displacement field. A iterative critical factor least squares algorithm (CFLS) is developed which distinguishes the distance between the data points and the least square plane to identify the outliers. A successive boundary point algorithm is proposed to divide the measurement domain to improve the applicability and effectiveness of the CFLS algorithm. The feasibility and precision of the proposed method are discussed in detail through simulations and experiments. Results show that the outliers are reliably recognized and the precision of the strain estimation is highly improved by using these methods.


2021 ◽  
pp. 002199832110507
Author(s):  
Narin S. Fatima ◽  
Robert E. Rowlands

Although the mechanical integrity of a member can be highly influenced by associated stresses, determining the latter can be very challenging for finite orthotropic composites containing cutouts. This is particularly so if the external loading is not well known, a common situation in practical situations. Acknowledging the above, a finite elliptically-perforated orthotropic tensile laminate is stress analyzed by combining measured displacement data with relevant analytical and numerical tools. Knowledge of the external loading is unnecessary. Results are verified independently and the concepts are applicable to other situations. The developed technology can provide important design-type information for orthotropic composites. In particular, the ability to apply analyses for perforated composite structures which assume infinite geometry to finite geometries is demonstrated.


Author(s):  
Angus Bridges ◽  
Andrew Yacoot ◽  
Thomas Kissinger ◽  
Ralph P Tatam

Abstract Displacement measuring interferometers, commonly employed for traceable measurements at the nanoscale, suffer from non-linearities in the measured displacement that limit the achievable measurement uncertainty for microscopic displacements. Two closely related novel non-linearity correction methodologies are presented here that allow for the correction of non-linearities in cases where the displacement covers much less than a full optical fringe. Both corrections have been shown, under ideal conditions, to be capable of reducing all residual non-linearity harmonics to below the 10 pm level.


Author(s):  
Muhammad Shehzad ◽  
Sean Lawrence ◽  
Callum Atkinson ◽  
Julio Soria

Several techniques including two-dimensional (2D) and three-dimensional (3D) calibration are used for the calibration of two-component two-dimensional (2C-2D) particle image velocimetry (PIV) and three-component two-dimensional (3C-2D) stereoscopic PIV (SPIV) systems. A major requirement of these techniques is to keep the calibration target exactly at the position of the laser sheet within the field of view (FOV), which is very difficult to achieve (Raffel et al., 2018). In 3C-2D SPIV, several methods offer different correction schemes based on the disparity between the FOV of two stereo cameras produced due to misalignment, to account for the misalignment error. These techniques adjust the calibration or the measured displacement field in different ways to reduce the error which may introduce an unintended error in the measurement position and/or velocity such as a bias in the measured three-component 3C displacements. This paper introduces a novel method to align the laser sheet with the calibration target so that the uncertainty in displacement measurements is minimal. Ideally, it should be of the order of the uncertainty associated with PIV measurement so that no ad hoc post-correction scheme is required.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4517
Author(s):  
Zulhaj Aliansyah ◽  
Kohei Shimasaki ◽  
Taku Senoo ◽  
Idaku Ishii ◽  
Shuji Umemoto

Vision-based structural displacement methods allow convenient monitoring of civil structures such as bridges, though they are often limited due to the small number of measurement points, constrained spatial resolution, and inability to identify the acting forces of the measured displacement. To increase the number of measurement points in vision-based bridge displacement measurement, this study introduces a front-view tandem marker motion capture system with side-view traffic counting to identify the force-inducing passing vehicles on the bridge’s deck. The proposed system was able to measure structural displacement at submillimeter resolution on eight measurement points at once at a distance of 40.8–64.2 m from a front-view camera. The traffic counting system with a side-view camera recorded the passing vehicles from two opposing lanes. We conducted a 35-min experiment for a 25 m-span steel road bridge with hundreds of cars passing over it and confirmed dynamic displacement distributions with amplitudes of several millimeters when large vehicles passed.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4023
Author(s):  
Leonardo M. Honório ◽  
Milena F. Pinto ◽  
Maicon J. Hillesheim ◽  
Francisco C. de Araújo ◽  
Alexandre B. Santos ◽  
...  

This research employs displacement fields photogrammetrically captured on the surface of a solid or structure to estimate real-time stress distributions it undergoes during a given loading period. The displacement fields are determined based on a series of images taken from the solid surface while it experiences deformation. Image displacements are used to estimate the deformations in the plane of the beam surface, and Poisson’s Method is subsequently applied to reconstruct these surfaces, at a given time, by extracting triangular meshes from the corresponding points clouds. With the aid of the measured displacement fields, the Boundary Element Method (BEM) is considered to evaluate stress values throughout the solid. Herein, the unknown boundary forces must be additionally calculated. As the photogrammetrically reconstructed deformed surfaces may be defined by several million points, the boundary displacement values of boundary-element models having a convenient number of nodes are determined based on an optimized displacement surface that best fits the real measured data. The results showed the effectiveness and potential application of the proposed methodology in several tasks to determine real-time stress distributions in structures.


2021 ◽  
Author(s):  
Paolo Boncio ◽  
Sara Amoroso ◽  
Jure Atanackov ◽  
Stéphane Baize ◽  
Josip Barbača ◽  
...  

<p>The 29 December 2020, Mw 6.4 Petrinja earthquake nucleated at a depth of ~10 km in the Sisak-Moslavina County in northern Croatia, ~6 km WSW of the Petrinja town. Focal mechanisms, aftershocks distribution, and preliminary Sentinel-1 InSAR interferogram suggest that the NW-SE right-lateral strike-slip Pokupsko-Petrinja fault was the source of this event.<br>The Croatian Geological Survey, joined by a European team of earthquake geologists from France, Slovenia and Italy, performed a prompt systematic survey of the area to map the surface effects of the earthquake. The field survey was guided by geological maps, preliminary morphotectonic mapping based on 1:5,000 topographical maps and InSAR interferogram. Locally, field mapping was aided by drone survey.<br>We mapped unambiguous evidence of surface faulting at several sites between Župić to the NW and Hrastovica to the SE, in the central part of the Pokupsko-Petrinja fault, for a total length of ~6.5 km. This is probably a minimum length since several portions of the fault have not been explored yet, and in part crossing forbidden uncleared minefields. Surface faulting was observed on anthropic features (roads, walls) and on Quaternary sediments (soft colluvium and alluvium) and Miocene bedrock (calcarenites). The observed ruptures strike mostly NW-SE, with evidences of strike-slip right-lateral displacement and zones of extension (opening) or contraction (small pressure ridges, moletracks) at<br>local bends of the rupture trace. Those ruptures are interpreted as evidences of coseismic surface faulting (primary effects) as they affect the morphology independently from the slope direction. Ground failures due to gravitational sliding and liquefaction occurrences were also observed, mapped and interpreted as secondary effects (see Amoroso et al., and Vukovski et al., this session). SE of Križ, the rupture broke a water pipeline with a right-lateral offset of several centimetres. Measured right-lateral net displacement varies from a few centimetres up to ~35 cm. A portion of the maximum measured displacement could be due to afterlisp, as it was mapped several days after the main shock. Hybrid surface ruptures (shear plus opening and liquefaction), striking SW-NE, with cm-size left-lateral strike-slip offsets were mapped on the northern side of the Petrinja town, ~3 km NE of the main fault.<br>Overall, the rupture zone appears discontinuous. Several factors might be inferred to explain this pattern such as incomplete mapping of the rupture, inherited structural discontinuities within the Pokupsko-Petrinja fault system, or specific mechanical properties of the Neogene-Quaternary strata</p>


2021 ◽  
Vol 1024 ◽  
pp. 95-101
Author(s):  
Yosuke Iwamoto ◽  
Makoto Yoshida ◽  
Hiroki Matsuda ◽  
Shin Ichiro Meigo ◽  
Daiki Satoh ◽  
...  

For validating the number of displacements per atom (dpa) for tungsten under high-energy proton irradiation, we measured displacement cross sections related to defect-induced electrical resistivity changes in a tungsten wire sample under irradiation with 389-MeV protons under 10 K. The Gifford–McMahon cryocooler was used to cool the sample using a conductive coolant via thermal conduction plates of oxygen-free high-conductivity copper and electrical insulation sheets of aluminum nitride ceramic. In this experiment, the displacement cross section was 1612 ± 371 b for tungsten at 389 MeV. A comparison of the experimental displacement cross sections of tungsten with the calculated results obtained using Norgett–Robinson–Torrens (NRT) dpa and athermal recombination-corrected (arc) dpa cross sections indicates that arc-dpa was in better agreement with the experimental data than NRT-dpa; this is similar to the displacement cross sections of copper. From the measurements of damage recovery of the accumulated defects in tungsten through isochronal annealing, which is related to the defect concentration of the sample, approximately 20% of the damage was recovered at 60 K. This trend was similar to those observed in other experimental results for reactor neutrons.


Sign in / Sign up

Export Citation Format

Share Document