Explore Better Network Framework for High Resolution Optical and SAR Image Matching

Author(s):  
Han Zhang ◽  
Lin Lei ◽  
Weiping Ni ◽  
Tao Tang ◽  
Junzheng Wu ◽  
...  
Author(s):  
Dexin Li ◽  
Zhen Dong ◽  
Yu Anxi ◽  
Yongsheng Zhang ◽  
Qilei Zhang ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 328
Author(s):  
Wenkai Liang ◽  
Yan Wu ◽  
Ming Li ◽  
Yice Cao ◽  
Xin Hu

The classification of high-resolution (HR) synthetic aperture radar (SAR) images is of great importance for SAR scene interpretation and application. However, the presence of intricate spatial structural patterns and complex statistical nature makes SAR image classification a challenging task, especially in the case of limited labeled SAR data. This paper proposes a novel HR SAR image classification method, using a multi-scale deep feature fusion network and covariance pooling manifold network (MFFN-CPMN). MFFN-CPMN combines the advantages of local spatial features and global statistical properties and considers the multi-feature information fusion of SAR images in representation learning. First, we propose a Gabor-filtering-based multi-scale feature fusion network (MFFN) to capture the spatial pattern and get the discriminative features of SAR images. The MFFN belongs to a deep convolutional neural network (CNN). To make full use of a large amount of unlabeled data, the weights of each layer of MFFN are optimized by unsupervised denoising dual-sparse encoder. Moreover, the feature fusion strategy in MFFN can effectively exploit the complementary information between different levels and different scales. Second, we utilize a covariance pooling manifold network to extract further the global second-order statistics of SAR images over the fusional feature maps. Finally, the obtained covariance descriptor is more distinct for various land covers. Experimental results on four HR SAR images demonstrate the effectiveness of the proposed method and achieve promising results over other related algorithms.


2010 ◽  
Vol 1 (3) ◽  
pp. 243-256 ◽  
Author(s):  
Sahil Suri ◽  
Peter Schwind ◽  
Johannes Uhl ◽  
Peter Reinartz
Keyword(s):  

Author(s):  
W. C. Liu ◽  
B. Wu

High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading) is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo). Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC) images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this research contribute to optimal exploitation of image information for high-resolution 3D modelling of the lunar surface, which is of significance for the advancement of lunar and planetary mapping.


Sign in / Sign up

Export Citation Format

Share Document