Modeling of Mutually Coupled Switched Reluctance Motors Based on Net Flux Method

2020 ◽  
Vol 56 (3) ◽  
pp. 2451-2461
Author(s):  
Siddharth Mehta ◽  
Md Ashfanoor Kabir ◽  
Iqbal Husain ◽  
Prerit Pramod
1999 ◽  
Vol 46 (1) ◽  
pp. 177-183 ◽  
Author(s):  
A.M. Stankovic ◽  
G. Tadmor ◽  
Z.J. Coric ◽  
I. Agirman

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 917
Author(s):  
Ickjin Son ◽  
Grace Firsta Lukman ◽  
Mazahir Hussain Shah ◽  
Kwang-Il Jeong ◽  
Jin-Woo Ahn

Switched reluctance motors (SRMs) are simple in structure, easy to manufacture, magnet-less, brushless, and highly robust compared to other AC motors which makes them a good option for applications that operate in harsh environment. However, the motor has non-linear magnetic characteristics, and it comes with various pole-phase combinations and circuit topologies that causes many difficulties in deciding on which type to choose. In this paper, the viability of SRM as a low-cost, rugged machine for vehicle radiator cooling fan is considered. First, necessary design considerations are presented, then three commonly use types of SRM are analyzed: A 3-phase 6/4, 3-phase 12/8, and a 4-phase 8/6 to find their static and dynamic characteristics so the most suitable type can be selected. Simulation results show that the 8/6 SRM produces the highest efficiency with less phase current which reduces the converter burden. However, with asymmetric half bridge converter, eight power switches are required for 8/6 SRM and thus put a burden on the overall drive cost. As a solution, the Miller converter with only six switches for four phase SRM. To verify the proposed idea, the 8/6 SRM was manufactured and tested. The results show that Miller converter can be used for the proposed SRM with slightly reduced efficiency at 80.4%.


Sign in / Sign up

Export Citation Format

Share Document