Model Predictive Torque Control for Torque Ripple Compensation in Variable-Speed PMSMs

2016 ◽  
Vol 63 (7) ◽  
pp. 4584-4592 ◽  
Author(s):  
Andres Mora ◽  
Alvaro Orellana ◽  
Jorge Juliet ◽  
Roberto Cardenas
Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 132
Author(s):  
Siyu Gao ◽  
Yanjun Wei ◽  
Di Zhang ◽  
Hanhong Qi ◽  
Yao Wei

Model predictive torque control with duty cycle control (MPTC-DCC) is widely used in motor drive systems because of its low torque ripple and good steady-state performance. However, the selection of the optimal voltage vector and the calculation of the duration are extremely dependent on the accuracy of the motor parameters. In view of this situation, A modified MPTC-DCC is proposed in this paper. According to the variation of error between the measured value and the predicted value, the motor parameters are calculated in real-time. Meanwhile, Model reference adaptive control (MRAC) is adopted in the speed loop to eliminate the disturbance caused by the ripple of real-time update parameters, through which the disturbance caused by parameter mismatch is suppressed effectively. The simulation and experiment are carried out on MATLAB / Simulink software and dSPACE experimental platform, which corroborate the principle analysis and the correctness of the method.


Sign in / Sign up

Export Citation Format

Share Document