Model Predictive Torque Control with low Torque Ripple for Interior PM Motor Variable Speed Drives

Author(s):  
A. G. Sarigiannidis ◽  
F. A. Karamountzou ◽  
A. G. Kladas
Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 132
Author(s):  
Siyu Gao ◽  
Yanjun Wei ◽  
Di Zhang ◽  
Hanhong Qi ◽  
Yao Wei

Model predictive torque control with duty cycle control (MPTC-DCC) is widely used in motor drive systems because of its low torque ripple and good steady-state performance. However, the selection of the optimal voltage vector and the calculation of the duration are extremely dependent on the accuracy of the motor parameters. In view of this situation, A modified MPTC-DCC is proposed in this paper. According to the variation of error between the measured value and the predicted value, the motor parameters are calculated in real-time. Meanwhile, Model reference adaptive control (MRAC) is adopted in the speed loop to eliminate the disturbance caused by the ripple of real-time update parameters, through which the disturbance caused by parameter mismatch is suppressed effectively. The simulation and experiment are carried out on MATLAB / Simulink software and dSPACE experimental platform, which corroborate the principle analysis and the correctness of the method.


2016 ◽  
Vol 63 (7) ◽  
pp. 4584-4592 ◽  
Author(s):  
Andres Mora ◽  
Alvaro Orellana ◽  
Jorge Juliet ◽  
Roberto Cardenas

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 374
Author(s):  
Tomas Esparza Sola ◽  
Huang-Jen Chiu ◽  
Yu-Chen Liu ◽  
Arief Noor Rahman

This paper presents a method to extend the DC bus utilization on an induction motor (IM) by using a combination of Space-Vector Modulated Direct Torque Control (DTC–SVM) and conventional DTC. The scheme proposed in this paper exploits the advantages of both control methods. During the linear region, it allows for a low torque ripple and low current harmonic distortion (THD). During the overmodulation region, it allows for the fastest torque response up to the six-step operation region. In both regions, there is complete independence of the motor parameters. The paper describes a way to provide a smooth transition between the two control schemes. Non-linearities affect the stator flux angle estimation, which leads to the inability to decouple torque and flux. To overcome this problem, a novel PI-based control scheme as well as a simplification on the decoupling terms’ calculation are proposed. Simulation and experimental results are presented to verify the feasibility of the proposed method.


2021 ◽  
Vol 297 ◽  
pp. 01017
Author(s):  
Fouad Labchir ◽  
Mhammed Hasoun ◽  
Aziz El Afia ◽  
Karim Benkirane ◽  
Mohamed Khafallah

In this paper a direct torque control strategy for dual three-phase permanent magnet synchronous motor (DTP-PMSM) is presented, the machine has two sets of three-phase stator windings spatially phase shifted by 30 electric degrees. In order to reduce the stator harmonic current, torque and flux are controlled based on regulators and Vector Space Decomposition technique. The proposed approach has the benefits of low stator current distortion and low torque ripple. The validity and the efficiency of the selected technique are confirmed by simulation results.


2014 ◽  
Vol 573 ◽  
pp. 150-154
Author(s):  
R. Dharmaprakash ◽  
Joseph Henry

This paper proposes the natural extension of classic switching table based direct torque control of induction motor modified for 3-level diode clamped inverter. The proposed method has the advantages of fewer harmonic in the output and low torque ripples. The switching table direct torque control scheme is adopted due to the simplicity of its control algorithm. To demonstrate the performance of proposed multilevel inverter fed direct torque control, the simulations are carried out for constant speed under no load and step change in load. The comparison of the dynamic and steady state performance in terms of torque ripple of the 2-level inverter and 3-level inverters are presented.


Sign in / Sign up

Export Citation Format

Share Document