Wheel Slip Control for the Electric Vehicle With In-Wheel Motors: Variable Structure and Sliding Mode Methods

2020 ◽  
Vol 67 (10) ◽  
pp. 8535-8544 ◽  
Author(s):  
Dzmitry Savitski ◽  
Valentin Ivanov ◽  
Klaus Augsburg ◽  
Tomoki Emmei ◽  
Hiroyuki Fuse ◽  
...  
Robotica ◽  
2008 ◽  
Vol 27 (6) ◽  
pp. 801-811 ◽  
Author(s):  
Z. B. Song ◽  
L. D. Seneviratne ◽  
K. Althoefer ◽  
X. J. Song ◽  
Y. H. Zweiri

SUMMARYSliding mode observer is a variable structure system where the dynamics of a nonlinear system is altered via application of a high-frequency switching control. This paper presents a non-linear sliding mode observer for wheel linear slip and slip angle estimation of a single wheel based on its kinematic model and velocity measurements with added noise to simulate actual on-board sensor measurements. Lyapunov stability theory is used to establish the stability conditions for the observer. It is shown that the observer will converge in a finite time, provided the observer gains satisfy constraints based on a stability analysis. To validate the observer, linear and two-dimensional (2D) test rigs are specially designed. The sliding mode observer is tested under a variety of conditions and it is shown that the sliding mode observer can estimate wheel slip and slip angle to a high accuracy. It is also shown that the sliding mode observer can accurately predict wheel slip and slip angle in the presence of noise, by testing the performance of the sliding mode observer after adding white noise to the measurements. An extended Kalman filter is also developed for comparison purposes. The sliding mode observer is better in terms of prediction accuracy.


Author(s):  
Graeme Morrison ◽  
David Cebon

A pneumatic slip control braking system was demonstrated, which reduces the emergency stopping distances of heavy goods vehicles by up to 19%. Solutions are still required to set the optimal reference wheel slip for this system online, so that it can adapt to changing operating conditions. This paper considers whether the use of extremum-seeking algorithms is a feasible alternative approach to online tyre model fitting, the computational expense of which has, to date, inhibited real-time implementation. The convergence and the stability properties of a first-order sliding-mode extremum-seeking algorithm are discussed, and its tuneable parameters are recast as physically meaningful performance metrics. Computer simulations are conducted using a detailed braking system model, and hardware-in-the-loop simulations are conducted with prototype pneumatic slip control braking hardware for heavy goods vehicles. The extremum-seeking algorithm enables the braking system to achieve at least 95% of the maximum possible braking force for almost the entirety of an emergency stop. The robustness to parameter errors, the road roughness and the changing friction conditions are all explored.


2010 ◽  
Vol 11 (1) ◽  
pp. 122-131 ◽  
Author(s):  
M. Amodeo ◽  
A. Ferrara ◽  
R. Terzaghi ◽  
C. Vecchio

2013 ◽  
Vol 60 (8) ◽  
pp. 3256-3271 ◽  
Author(s):  
Ricardo de Castro ◽  
Rui Esteves Araujo ◽  
Diamantino Freitas

Sign in / Sign up

Export Citation Format

Share Document