Modified deep auto-encoder driven by multi-source parameters for fault transfer prognosis of aero-engine

Author(s):  
Zhiyi He ◽  
Haidong Shao ◽  
Ziyang Ding ◽  
Hongkai Jiang ◽  
Junsheng Cheng
2015 ◽  
Vol 9 (2) ◽  
pp. 132-141 ◽  
Author(s):  
Wang Tao ◽  
Ding Huapeng ◽  
Tang Jie ◽  
Wang Hao

2020 ◽  
Vol 222 (3) ◽  
pp. 1639-1655
Author(s):  
Xin Zhang ◽  
Corinna Roy ◽  
Andrew Curtis ◽  
Andy Nowacki ◽  
Brian Baptie

SUMMARY Seismic body wave traveltime tomography and surface wave dispersion tomography have been used widely to characterize earthquakes and to study the subsurface structure of the Earth. Since these types of problem are often significantly non-linear and have non-unique solutions, Markov chain Monte Carlo methods have been used to find probabilistic solutions. Body and surface wave data are usually inverted separately to produce independent velocity models. However, body wave tomography is generally sensitive to structure around the subvolume in which earthquakes occur and produces limited resolution in the shallower Earth, whereas surface wave tomography is often sensitive to shallower structure. To better estimate subsurface properties, we therefore jointly invert for the seismic velocity structure and earthquake locations using body and surface wave data simultaneously. We apply the new joint inversion method to a mining site in the United Kingdom at which induced seismicity occurred and was recorded on a small local network of stations, and where ambient noise recordings are available from the same stations. The ambient noise is processed to obtain inter-receiver surface wave dispersion measurements which are inverted jointly with body wave arrival times from local earthquakes. The results show that by using both types of data, the earthquake source parameters and the velocity structure can be better constrained than in independent inversions. To further understand and interpret the results, we conduct synthetic tests to compare the results from body wave inversion and joint inversion. The results show that trade-offs between source parameters and velocities appear to bias results if only body wave data are used, but this issue is largely resolved by using the joint inversion method. Thus the use of ambient seismic noise and our fully non-linear inversion provides a valuable, improved method to image the subsurface velocity and seismicity.


Author(s):  
Adam Robinson ◽  
Carol Eastwick ◽  
Herve´ Morvan

Within an aero-engine bearing chamber oil is provided to components to lubricate and cool. This oil must be efficiently removed (scavenged) from the chamber to ensure it does not overheat and degrade. Bearing chambers typically contain a sump section with an exit pipe leading to a scavenge pump. In this paper a simplified geometry of a sump section, here simply made of a radial off-take port on a walled inclined plane, is analysed computationally. This paper follows on work presented within GT2008-50634. In the previous paper it was shown that simple gravity draining from a static head of liquid cold be modelled accurately, for what was akin to a deep sump situation fond in integrated gear boxes for example. The work within this paper will show that the draining of flow perpendicular to a moving film can be modelled. This situation is similar to the arrangements found in transmission bearing chambers. The case modelled is of a walled gravity driven film running down a plane with a circular off-take port, this replicates experimental work similar to that reported in GT2008-50632. The commercial computational fluid dynamics (CFD) code, Fluent 6 [1] has been employed for modelling, sing the Volume of Fluid (VOF) approach of Hirt and Nichols [2, 3] to capture the physics of both the film motion and the two phase flow in the scavenge pipe system. Surface tension [4] and a sharpening algorithm [5] are used to complement the representation of the free surface and associated effects. This initial CFD investigation is supported and validated with experimental work, which is only depicted briefly here as it is mainly sued to support the CFD methodology. The case has been modelled in full as well as with the use of a symmetry plane running down the centre of the plane parallel to the channel walls. This paper includes details of the meshing methodology, the boundary conditions sued, which will be shown to be of critical importance to accurate modelling, and the modelling assumptions. Finally, insight into the flow patterns observed for the cases modelled are summarised. The paper further reinforces that CFD is a promising approach to analysing bearing chamber scavenge flows although it can still be relatively costly.


Author(s):  
Zhong Luo ◽  
Lei Li ◽  
Yang Yang ◽  
Xiaojie Hou ◽  
Jiaxi Liu ◽  
...  

The elastic ring is widely used in elastic support structures of aero-engine because of its simple structure and convenient manufacturing. In this paper, two elastic ring models, 3D and 2D models, are proposed, where the fillets between the bulges and ring are considered. The 2D model is more efficient for the calculation of stiffness characteristics. The 3D model can be used to obtain the maximum stress position in the axial direction. Then the experimental testing is carried out to verify the accuracy and effectiveness of the proposed models. Based on the proposed models, the stiffness nonlinearity and critical load of the elastic ring are found for the first time, which can be used to determine the normal working load range. Moreover, the elastic ring models with and without fillets are developed, and the effect of the fillets on stress is discussed. The results show that the stress is reduced by considering the fillets, which are not considered in the existing literature.


Sign in / Sign up

Export Citation Format

Share Document