fault source
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 21)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 2113 (1) ◽  
pp. 012042
Author(s):  
Yongshao Xu ◽  
Bingzheng Liu ◽  
Haotian Shang ◽  
Mingduo Wang

Abstract Rotating machinery often produces continuous impact during operation due to the change of load and speed, which shows the characteristics of unsteady state and time-varying. Its working state can not be comprehensively judged by a single vibration state parameter. Therefore, this paper proposes to use acoustic sensors to collect the fault noise signal of rotating machinery, and use the whole column of sensors to detect the fault noise signal. Based on the microphone array, this paper studies the adaptive beamforming algorithm (MVDR) to locate the fault source of rotating machinery in space. The effect of fault source location is verified by simulation and equipment measurement experiments. The acoustic sensor does not in contact with the equipment, which will not damage the generator set, but also provide more effective information for fault source location and fault diagnosis and analysis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Maren Böse ◽  
Allie A. Hutchison ◽  
Isabelle Manighetti ◽  
Jiawei Li ◽  
Frédérick Massin ◽  
...  

The Finite-Fault Rupture Detector (FinDer) algorithm computes rapid line-source rupture models from high-frequency seismic acceleration amplitudes (PGA). In this paper, we propose two extensions to FinDer, called FinDerS and FinDerS+, which have the advantage of taking into account a geological property of the source fault, its structural maturity, as well as its relation to the earthquake slip distribution. These two new algorithms calculate real-time earthquake slip profiles by backprojecting seismic and/or geodetic displacement amplitudes onto the FinDer line-source. This backprojection is based on a general empirical equation established in previous work that relates dynamic peak ground displacement (PGD) at the stations to on-fault coseismic slip. While FinDerS projects PGD onto the current FinDer line-source, FinDerS+ allows the rupture to grow beyond the current model extent to predict future rupture evolution. For an informed interpolation and smoothing of the estimated slip values, FinDerS and FinDerS+ both employ a generic empirical function that has been shown to relate the along-strike gradient of structural maturity of the ruptured fault, the earthquake slip distribution, and the rupture length. Therefore, while FinDer derives magnitudes from a relatively uncertain and general empirical rupture length-magnitude relations, FinDerS and FinDerS+ provide alternate and better informed magnitude estimates using the mean slip of the profiles derived from the integration of fault source maturity. The two new algorithms can incorporate both seismic strong-motion and geodetic displacement data. In order to recover PGD from strong-motion instruments, we double-integrate and high-pass filter (> 0.075 Hz) the seismic acceleration records. Together, the three algorithms exploit the full spectrum of ground-motions, including high frequencies to derive a source fault model (FinDer) and low frequencies to determine the static offsets along this model (FinDerS and FinDerS+). We test the three algorithms for the 2019 MW 7.1 Ridgecrest (California), 2016 MW 7.0 Kumamoto (Japan), and 2008 MW 7.9 Wenchuan (China) earthquakes. Conclusively, low-frequency PGD data and integration of the fault maturity gradient do not speed-up calculations for these events, but provide additional information on slip distribution and final rupture length, as well as alternative estimates of magnitudes that can be useful to check for consistency across the algorithm suite. The FinDer algorithms systematically outperform previously established real-time PGD-based magnitude estimates in terms of speed and accuracy. The resulting slip distributions can be useful for improved ground-motion prediction given the observed relationship between seismic radiation and fault maturity.


2021 ◽  
Vol 103 ◽  
pp. 104300
Author(s):  
Kai Zhang ◽  
Baoping Tang ◽  
Lei Deng ◽  
Xiaoxia Yu ◽  
Jing Wei

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 144
Author(s):  
Haodong Yuan ◽  
Nailong Wu ◽  
Xinyuan Chen

For mechanical compound fault, it is of great significance to employ the vibration signal of a single-channel compound fault to analyze and realize the separation of multiple fault sources, which is essentially the problem of single-channel blind source separation. Shift invariant K-means singular value decomposition (shift invariant K-SVD) dictionary learning is suitable to extract the periodic and repeated fault features of a rotating machinery fault, hence in this article a single-channel compound fault analysis method is put forward which combines shift invariant K-SVD with improved fast independent component analysis (improved FastICA) algorithm. Firstly, based on single-channel compound fault signal, the shift invariant K-SVD algorithm can be used for learning multiple latent components that can be constructed as a virtual multi-channel signal. Then the improved FastICA algorithm is utilized to realize the separation of multiple fault source signals. With regard to the FastICA algorithm, the third-order convergence Newton iteration method is adopted to improve convergence speed. Moreover, in order to address the problem that FastICA is very sensitive to initialization, a steepest descent method can be applied. The experimental analysis of the compound fault of rolling bearing verifies that the presented method is effective to separate multiple fault source signals and the improved FastICA algorithm can increase convergence rate and overcome the problem of sensitivity to initialization.


2021 ◽  
Vol 13 (3) ◽  
pp. 1440
Author(s):  
Katsuichiro Goda ◽  
Andrei Sharipov

This study develops a fault-source-based seismic hazard model for the Leech River Valley Fault (LRVF) and the Devil’s Mountain Fault (DMF) in southern Vancouver Island, British Columbia, Canada. These faults pose significant risks to the provincial capital, Victoria, due to their proximity and potentially large earthquake magnitudes. To evaluate the effects of including these faults in probabilistic seismic hazard analysis and city-wide seismic loss estimation for Victoria, a comprehensive sensitivity analysis is conducted by considering different fault rupture patterns and different earthquake magnitude models, as well as variations in their parameters. The aim is to assess the relative contributions of the LRVF-DMF system to the overall seismic hazard and risk in Victoria at different return periods. The consideration of the LRVF-DMF system as a potential seismic source increases the seismic risk assessment results by 10 to 30%, especially at the high return period levels. The sensitivity analysis results highlight the importance of determining the slip rate for the fault deformation zone and of specifying the earthquake magnitude models (e.g., characteristic versus truncated exponential models). From urban seismic risk management perspectives, these nearby faults should be considered critical earthquake scenarios.


2020 ◽  
Vol 37 (6) ◽  
pp. 975-987
Author(s):  
Sadra Mousavi ◽  
Duygu Bayram Kara ◽  
Sahin Serhat Seker

An Integrated Fault Evaluation (IFE) process is proposed in this study. It includes Sensor Validation (SV), Fault Detection (FD) and Fault Source Identification (FSI). The proposed algorithm employs data fusion algorithm enhanced by Kalman filter (KF). As the case study, vibration signals representing different aging states of an induction motor are used. The vibration data collected from two identical sensors with different measurement and process noises are achieved. Through the statistical and frequency domain characteristics, IFE is realized. The most prominent contribution of the study is the capability of distinction between the aging of the system and the process problems. For this aim, a rate representing the healthiness, which can discern the impact of the process noise and system aging, is calculated.


2020 ◽  
Vol 14 (4) ◽  
pp. 405-412
Author(s):  
Endra Gunawan ◽  
Takuya Nishimura ◽  
Susilo Susilo ◽  
Sri Widiyantoro ◽  
Nanang T. Puspito ◽  
...  

AbstractOn 6 December 2016 at 22:03 UTC, a devastating magnitude 6-class strike-slip earthquake occurred along an unidentified and unmapped fault in Pidie Jaya, northern Sumatra. We analysed the possible fault using continuous Global Positioning System (GPS) observation available in the region. In our investigation, we searched for the fault source parameters of the north- and south-dipping left-lateral faults and the west- and east-dipping right-lateral faults. We identified that the fault responsible for the earthquake was located offshore, with a southwest-northeast direction. We also computed the Coulomb failure stress and compared the result with the distribution of the aftershocks. In this study, we demonstrated that the result of the geological field survey conducted soon after the mainshock was attributed to the secondary effects of ground shaking and near-surface deformation, and not surface faulting. The newly identified offshore fault proposed by this study calls for further investigation of the corresponding submarine morphological attributes in this particular region.


2020 ◽  
pp. 875529302095244
Author(s):  
Mahdi Bahrampouri ◽  
Adrian Rodriguez-Marek ◽  
Shrey Shahi ◽  
Haitham Dawood

This article presents a database of ground motions parameters for earthquakes recorded in Japan by the Kiban Kyoshin network (KiK-net). The database includes all earthquakes in the KiK-net website with magnitude larger than three and recorded between 1996 and the end of 2017. In addition to the information KiK-net provides for each event, we have enriched the database using moment tensor solutions provided by the F-net website and, when available, finite-fault source models from the literature. Various distance measures are computed for each ground motion, including estimates of rupture distance for sufficiently large events, including those with finite-fault source models. Each ground motion is processed using an automated algorithm. Several intensity measures (i.e. spectral acceleration, smoothed and down-sampled Fourier amplitude, Arias intensity, and duration measures) of the processed ground motions are presented in the database. Intensity measures are computed both for surface and borehole records. Finally, the database includes parameters for the recording sites based on shear wave velocity profiles provided by KiK-net.


Sign in / Sign up

Export Citation Format

Share Document