Lossless Data Embedding With High Embedding Capacity Based on Declustering for VQ-Compressed Codes

2007 ◽  
Vol 2 (3) ◽  
pp. 341-349 ◽  
Author(s):  
Chin-Chen Chang ◽  
Yi-Pei Hsieh ◽  
Chih-Yang Lin
2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yuan-Yu Tsai

This study adopts a triangle subdivision scheme to achieve reversible data embedding. The secret message is embedded into the newly added vertices. The topology of added vertex is constructed by connecting it with the vertices of located triangle. For further raising the total embedding capacity, a recursive subdivision mechanism, terminated by a given criterion, is employed. Finally, a principal component analysis can make the stego model against similarity transformation and vertex/triangle reordering attacks. Our proposed algorithm can provide a high and adjustable embedding capacity with reversibility. The experimental results demonstrate the feasibility of our proposed algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dinh-Chien Nguyen ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Huan-Sheng Hsueh ◽  
Fang-Rong Hsu

Data hiding is a technique that allows secret data to be delivered securely by embedding the data into cover digital media. In this paper, we propose a new data hiding algorithm for H.264/advanced video coding (AVC) of video sequences with high embedding capacity. In the proposed scheme, to embed secret data into the quantized discrete cosine transform (QDCT) coefficients of I frames without any intraframe distortion drift, some embeddable coefficient pairs are selected in each block, and they are divided into two different groups, i.e., the embedding group and the averting group. The embedding group is used to carry the secret data, and the averting group is used to prevent distortion drift in the adjacent blocks. The experimental results show that the proposed scheme can avoid intraframe distortion drift and guarantee low distortion of video sequences. In addition, the proposed scheme provides enhanced embedding capacity compared to previous schemes. Moreover, the embedded secret data can be extracted completely without the requirement of the original secret data.


2020 ◽  
Vol 16 (3) ◽  
pp. 155014772091100
Author(s):  
Yi Chen ◽  
Hongxia Wang ◽  
Xiaoxu Tang ◽  
Yong Liu ◽  
Hanzhou Wu ◽  
...  

Developing the technology of reversible data hiding based on video compression standard, such as H.264/advanced video coding, has attracted increasing attention from researchers. Because it can be applied in some applications, such as error concealment and privacy protection. This has motivated us to propose a novel two-dimensional reversible data hiding method with high embedding capacity in this article. In this method, all selected quantized discrete cosine transform coefficients are first paired two by two. And then, each zero coefficient-pair can embed 3 information bits and the coefficient-pairs only containing one zero coefficient can embed 1 information bit. In addition, only one coefficient of each one of the rest coefficient-pairs needs to be changed for reversibility. Therefore, the proposed two-dimensional reversible data hiding method can obtain high embedding capacity when compared with the related work. Moreover, the proposed method leads to less degradation in terms of peak-signal-to-noise ratio, structural similarity index, and less impact on bit-rate increase.


2014 ◽  
Vol 6 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Shun Zhang ◽  
Tie-gang Gao ◽  
Fu-sheng Yang

A reversible data hiding scheme based on integer DWT and histogram modification is proposed. In the scheme, the cover media is firstly transformed by Integer DWT (Discrete Wavelet Transformation); then information is embedded through the modification of histograms of the middle and high frequency sub-bands of the DWT coefficients. In order to increase the embedding capacity, a multi-level scheme is proposed, which achieved both high embedding capacity and reversibility. Extensive experimental results have shown that the proposed scheme achieves both higher embedding capacity and lower distortion than spatial domain histogram modification based schemes; and it achieved better performance than integer DCT (Discrete Cosine Transformation) based histogram modification scheme.


2020 ◽  
Vol 10 (21) ◽  
pp. 7820
Author(s):  
Han-Yan Wu ◽  
Ling-Hwei Chen ◽  
Yu-Tai Ching

The primary goal of steganographic methods is to develop statically undetectable methods with high steganographic capacity. The embedding efficiency is one kind of measure for undetectability. Block-based steganography methods have been proposed for achieving higher embedding efficiency under limited embedding capacity. However, in these methods, some blocks with larger embedding distortions are skipped, and a location map is usually incorporated into these methods to record the embedding status of each block. This reduces the embedding capacity for secret messages. In this study, we proposed a block-based steganography method without a location map for palette images. In this method, multiple secret bits can be embedded in a block by modifying at most one pixel with minimal embedding distortion; this enables each block to be used for data embedding; thus, our method provides higher embedding capacity. Furthermore, under the same capacity, the estimated and experimental embedding efficiencies of the proposed method are compared with those of Imaizumi et al. and Aryal et al.’s methods; the comparisons indicate that the proposed method has higher embedding efficiency than Imaizumi et al. and Aryal et al.’s methods.


Sign in / Sign up

Export Citation Format

Share Document