scholarly journals SaliencyGAN: Deep Learning Semisupervised Salient Object Detection in the Fog of IoT

2020 ◽  
Vol 16 (4) ◽  
pp. 2667-2676 ◽  
Author(s):  
Chengjia Wang ◽  
Shizhou Dong ◽  
Xiaofeng Zhao ◽  
Giorgos Papanastasiou ◽  
Heye Zhang ◽  
...  
Author(s):  
M. N. Favorskaya ◽  
L. C. Jain

Introduction:Saliency detection is a fundamental task of computer vision. Its ultimate aim is to localize the objects of interest that grab human visual attention with respect to the rest of the image. A great variety of saliency models based on different approaches was developed since 1990s. In recent years, the saliency detection has become one of actively studied topic in the theory of Convolutional Neural Network (CNN). Many original decisions using CNNs were proposed for salient object detection and, even, event detection.Purpose:A detailed survey of saliency detection methods in deep learning era allows to understand the current possibilities of CNN approach for visual analysis conducted by the human eyes’ tracking and digital image processing.Results:A survey reflects the recent advances in saliency detection using CNNs. Different models available in literature, such as static and dynamic 2D CNNs for salient object detection and 3D CNNs for salient event detection are discussed in the chronological order. It is worth noting that automatic salient event detection in durable videos became possible using the recently appeared 3D CNN combining with 2D CNN for salient audio detection. Also in this article, we have presented a short description of public image and video datasets with annotated salient objects or events, as well as the often used metrics for the results’ evaluation.Practical relevance:This survey is considered as a contribution in the study of rapidly developed deep learning methods with respect to the saliency detection in the images and videos.


2020 ◽  
Vol 104 ◽  
pp. 107340
Author(s):  
Qiong Wang ◽  
Lu Zhang ◽  
Yan Li ◽  
Kidiyo Kpalma

Author(s):  
Bo Li ◽  
Zhengxing Sun ◽  
Yuqi Guo

Image saliency detection has recently witnessed rapid progress due to deep neural networks. However, there still exist many important problems in the existing deep learning based methods. Pixel-wise convolutional neural network (CNN) methods suffer from blurry boundaries due to the convolutional and pooling operations. While region-based deep learning methods lack spatial consistency since they deal with each region independently. In this paper, we propose a novel salient object detection framework using a superpixelwise variational autoencoder (SuperVAE) network. We first use VAE to model the image background and then separate salient objects from the background through the reconstruction residuals. To better capture semantic and spatial contexts information, we also propose a perceptual loss to take advantage from deep pre-trained CNNs to train our SuperVAE network. Without the supervision of mask-level annotated data, our method generates high quality saliency results which can better preserve object boundaries and maintain the spatial consistency. Extensive experiments on five wildly-used benchmark datasets show that the proposed method achieves superior or competitive performance compared to other algorithms including the very recent state-of-the-art supervised methods.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1174
Author(s):  
Ashish Kumar Gupta ◽  
Ayan Seal ◽  
Mukesh Prasad ◽  
Pritee Khanna

Detection and localization of regions of images that attract immediate human visual attention is currently an intensive area of research in computer vision. The capability of automatic identification and segmentation of such salient image regions has immediate consequences for applications in the field of computer vision, computer graphics, and multimedia. A large number of salient object detection (SOD) methods have been devised to effectively mimic the capability of the human visual system to detect the salient regions in images. These methods can be broadly categorized into two categories based on their feature engineering mechanism: conventional or deep learning-based. In this survey, most of the influential advances in image-based SOD from both conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency modeling trends with key issues, core techniques, and the scope for future research work have been discussed in the context of difficulties often faced in salient object detection. Results are presented for various challenging cases for some large-scale public datasets. Different metrics considered for assessment of the performance of state-of-the-art salient object detection models are also covered. Some future directions for SOD are presented towards end.


2020 ◽  
Vol 32 (21) ◽  
pp. 1381-1384
Author(s):  
Yonghao Li ◽  
Jianhong Shi ◽  
Lei Sun ◽  
Xiaoyan Wu ◽  
Guihua Zeng

2020 ◽  
Vol 10 (23) ◽  
pp. 8754
Author(s):  
Wajeeha Sultan ◽  
Nadeem Anjum ◽  
Mark Stansfield ◽  
Naeem Ramzan

Salient-object detection is a fundamental and the most challenging problem in computer vision. This paper focuses on the detection of salient objects, especially in low-contrast images. To this end, a hybrid deep-learning architecture is proposed where features are extracted on both the local and global level. These features are then integrated to extract the exact boundary of the object of interest in an image. Experimentation was performed on five standard datasets, and results were compared with state-of-the-art approaches. Both qualitative and quantitative analyses showed the robustness of the proposed architecture.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 152483-152492 ◽  
Author(s):  
Qixin Chen ◽  
Tie Liu ◽  
Yuanyuan Shang ◽  
Zhuhong Shao ◽  
Hui Ding

Author(s):  
Wenguan Wang ◽  
Qiuxia Lai ◽  
Huazhu Fu ◽  
Jianbing Shen ◽  
Haibin Ling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document