Multi-Exponential Transverse Relaxation Times Estimation From Magnetic Resonance Images Under Rician Noise and Spatial Regularization

2020 ◽  
Vol 29 ◽  
pp. 6721-6733
Author(s):  
Christian El Hajj ◽  
Said Moussaoui ◽  
Guylaine Collewet ◽  
Maja Musse
Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Magnetic resonance image noise reduction is important to process further and visual analysis. Bilateral filter is denoises image and also preserves edge. It proposes Iterative bilateral filter which reduces Rician noise in the magnitude magnetic resonance images and retains the fine structures, edges and it also reduces the bias caused by Rician noise. The visual and diagnostic quality of the image is retained. The quantitative analysis is based on analysis of standard quality metrics parameters like peak signal-to-noise ratio and mean structural similarity index matrix reveals that these methods yields better results than the other proposed denoising methods for MRI. Problem associated with the method is that it is computationally complex hence time consuming. It is not recommended for real time applications. To use in real time application a parallel implantation of the same using FPGA is proposed.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 226 ◽  
Author(s):  
Jenna Poonoosamy ◽  
Sabina Haber-Pohlmeier ◽  
Hang Deng ◽  
Guido Deissmann ◽  
Martina Klinkenberg ◽  
...  

The understanding of the dissolution and precipitation of minerals and its impact on the transport of fluids in porous media is essential for various subsurface applications, including shale gas production using hydraulic fracturing (“fracking”), CO2 sequestration, or geothermal energy extraction. In this work, we conducted a flow through column experiment to investigate the effect of barite precipitation following the dissolution of celestine and consequential permeability changes. These processes were assessed by a combination of 3D non-invasive magnetic resonance imaging, scanning electron microscopy, and conventional permeability measurements. The formation of barite overgrowths on the surface of celestine manifested in a reduced transverse relaxation time due to its higher magnetic susceptibility compared to the original celestine. Two empirical nuclear magnetic resonance (NMR) porosity–permeability relations could successfully predict the observed changes in permeability by the change in the transverse relaxation times and porosity. Based on the observation that the advancement of the reaction front follows the square root of time, and micro-continuum reactive transport modelling of the solid/fluid interface, it can be inferred that the mineral overgrowth is porous and allows the diffusion of solutes, thus affecting the mineral reactivity in the system. Our current investigation indicates that the porosity of the newly formed precipitate and consequently its diffusion properties depend on the supersaturation in solution that prevails during precipitation.


2020 ◽  
Vol 35 (2) ◽  
pp. 264-273
Author(s):  
Fu-Hu Su ◽  
Wang-Chuan Xiao ◽  
Sheann-Huei Lin ◽  
Qiyong Li

With good contrast in T1 and T2 weighted imaging as well as low toxicity in 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, this work proposes the cross-linked polydimethylsiloxane colloids as a novel non-ionic contrast agent for gastrointestinal magnetic resonance imaging. The experiments of nuclear magnetic resonance spectra and relaxation show that within the interface of the colloids, there are nuclear Overhauser effect and transient nuclear Overhauser effect (cross-relaxation). Regarding the longitudinal relaxation experiments of CH2CH2O segments of Tween 80, a two spins system is found and modeled well by the equation [Formula: see text] which is deduced based on the transient nuclear Overhauser effect proposed by Solomon. The arbitrary constant X is additionally added with the initial conditions ( Iz −  I0) t=0 = −2 XS0 and ( Sz −  S0) t=0 = −2 S0. For the two spins system, D1 and T1 are corresponding to longitudinal relaxation times of the bound water and the CH2CH2O respectively. Concerning the transverse relaxation experiments of the CH2CH2O, they agree with the equation with three exponential decays, defined by three relaxation times, likely corresponding to three mechanisms. These mechanisms possibly are intramolecular and intermolecular dipole–dipole (DD) interactions and scalar coupling. Within the interface, hydrogen bonding causes the positive nuclear Overhauser effect of the CH2CH2O’s nuclear magnetic resonance spectra, the transient nuclear Overhauser effect of the CH2CH2O’s longitudinal relaxation experiments and the intermolecular dipole–dipole interactions of the CH2CH2O’s transverse relaxation experiments.


1995 ◽  
Vol 27 (10) ◽  
pp. 1421???1429 ◽  
Author(s):  
THOMAS B. PRICE ◽  
THOMAS R. McCAULEY ◽  
ANTONI J. DULEBA ◽  
KENNETH L. WILKENS ◽  
JOHN C. GORE

Sign in / Sign up

Export Citation Format

Share Document