Trend Removal of ECG Signal with LMS Algorithm

Author(s):  
Buse Bozok ◽  
Sami Arica
Author(s):  
Alka Gautam ◽  
Hoon-Jae Lee ◽  
Wan-Young Chung

In this study, a new algorithm is proposed—Asynchronous Averaging and Filtering (AAF) for ECG signal de-noising. R-peaks are detected with another proposed algorithm—Minimum Slot and Maximum Point selecting method (MSMP). AAF algorithm reduces random noise (major component of EMG noise) from ECG signal and provides comparatively good results for baseline wander noise cancellation. Signal to noise ratio (SNR) improves in filtered ECG signal, while signal shape remains undistorted. The authors conclude that R-peak detection with MSMP method gives comparable results from existing algorithm like Pan-Tomkins algorithm. AAF algorithm is advantageous over adaptation algorithms like Wiener and LMS algorithm. Overall performance of proposed algorithms is comparatively good.


Author(s):  
IMTEYAZ AHMAD ◽  
F. ANSARI ◽  
U.K. DEY

Background: The electrocardiogram(ECG) has the considerable diagnostic significance, and applications of ECG monitoring are diverse and in wide use. Noises that commonly disturb the basic electrocardiogram are power line interference(PLI), instrumentation noise, external electromagnetic field interference, noise due to random body movements and respiration movements. These noises can be classified according to their frequency content. It is essential to reduce these disturbances in ECG signal to improve accuracy and reliability. The bandwidth of the noise overlaps that of wanted signals, so that simple filtering cannot sufficiently enhance the signal to noise ratio. It is difficult to apply filters with fixed filter co-efficients to reduce these noise. Adaptive filter technique is required to overcome this problem as the filter coefficients can be varied to track the dynamic variations of the signals. Adaptive filter based on the least mean square (LMS) algorithm and recursive least squares (RLS) algorithm are applied to noisy ECG to reduce 50 Hz power line noise and motion artifact noise. Method: ECG signal is taken from physionet database. A ECG signal (without noise) was mixed with constant 0.1 mVp-p 50 Hz interference and motion artifact noise processed with Adaptive filter based on the least mean square (LMS) algorithm and recursive least squares (RLS) algorithm. Simulation results are also shown. Performance of filters are analyzed based on SNR and MSE.


Author(s):  
Alka Gautam ◽  
Hoon-Jae Lee ◽  
Wan-Young Chung

In this study, a new algorithm is proposed—Asynchronous Averaging and Filtering (AAF) for ECG signal de-noising. R-peaks are detected with another proposed algorithm—Minimum Slot and Maximum Point selecting method (MSMP). AAF algorithm reduces random noise (major component of EMG noise) from ECG signal and provides comparatively good results for baseline wander noise cancellation. Signal to noise ratio (SNR) improves in filtered ECG signal, while signal shape remains undistorted. The authors conclude that R-peak detection with MSMP method gives comparable results from existing algorithm like Pan-Tomkins algorithm. AAF algorithm is advantageous over adaptation algorithms like Wiener and LMS algorithm. Overall performance of proposed algorithms is comparatively good.


Author(s):  
T. Gowri ◽  
Rajesh Kumar P. ◽  
D.V.R. Koti Reddy

It is very important in remote cardiac diagnosis to extract pure ECG signal from the contaminated recordings of the signal. When recording the ECG signal in the laboratory, the signal is affected by numerous artifacts. Varies artifacts generally degrades the signal quality are PLI, EM, MA and EM. In addition to these, the channel noise also added when transmitting signal from remote location to diagnosis center for analyzing the signal. There are several approaches are used to reduce the noise present in the ECG signal. From the literature it is proven that compared to non adaptive filters, adaptive filters play vital role to trace the random changes in the corrupted signals. In this paper, we proposed efficient Variable step size leaky least mean fourth algorithm and its sign versions for reducing the complexity. These algorithms shows that it gives low steady state error due to least mean fourth and fast convergence rate that is it tracks the input signal quickly because of its variable step size is high at initial iterations of signal compared to the LMS algorithm. The performance of the algorithm is evaluated using SNR, frequency spectrum, MSE, misadjustment and convergence characteristics.


Sign in / Sign up

Export Citation Format

Share Document