signal shape
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 31)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
B. V. Platov ◽  
R. I. Khairutdinova ◽  
A. I. Kadirov

Background. Determining the productive deposit thickness is of fundamental importance for assessing the reserves of oil and gas fields. 3D seismic data is used to assess the thickness of seams in the interwell space. However, owing to the limited vertical resolution of seismic data, estimating thicknesses of thin deposits (less than 20 m) is challenging.Aim. To evaluate different approaches to calculating the thickness of the productive deposits based on seismic data with the purpose of selecting the most optimal approach.Materials and methods. We compared the results obtained using different approaches to assessing the productive deposit thickness of the Tula-Bobrikovian age in the interwell space, including the convergence method (calculating the thickness for oilwells with no seismic data used), the use of seismic attributes to calculate the “seismic attribute — reservoir thickness” dependency (for attributes, dominant frequency and mono-frequency component at 60 Hz), estimation of the thickness from the seismic signal shape. Cokriging was used to calculate inferred power maps from seismic attribute data and to classify them by waveform. For each of the techniques, the crossvalidation method and calculating the root-mean-square deviation were used as quality criteria.Results. When assessing the accuracy of thickness map development, the root-mean-square deviation was 12.3 m according to convergence method, 10.2 m — to the dominant frequency attribute, 7.2 m — to the attribute of the monofrequency component at 60 Hz and 6.3 m — to the signal shape classification. The latter method yielded the best results, and the developed thickness map allowed paleo-cut to be traced.Conclusions. Applying the thickness estimation method based on the seismic signal shape allows the value of the root-mean-square deviation to be reduced by a factor of 2 compared to that of the widely adopted convergence method. This approach permits productive deposits thickness to be more accurately estimated and hydrocarbon reserves to be determined.


Author(s):  
Mai M. Goda ◽  
Ahmed H. Hassan ◽  
Hassan Mostafa ◽  
Ahmed M. Soliman

Neuromorphic systems are the future computing systems to overcome the von Neumann’s power consumption and latency wall between memory and processing units. The two main components of any neuromorphic computing system are neurons and synapses. Synapses carry the weight of the system to be multiplied by the neuromorphic attributes, which represent the features of the task to be solved. Memristor (memoryresistor) is the most suitable circuit element to act as a synapse. Its ability to store, update and do matrix multiplication in nanoscale die area makes it very useful in neuromorphic synapses. One of the most popular memristor synapse configurations is the two-transistor–one-memristor (2T1M) synapse. This configuration is very useful in neuromorphic synapses for its ability to control reading and updating the weight on a chip by signals. The main problem with this synapse is that the reading operation is destructive, which results in changing the stored weight value. In this paper, a novel refreshment circuit is proposed to restore the correct weight in case of any destructive reading operations. The circuit makes a small interrupt time during operation without disconnecting the memristor, which makes the circuit very practical. The circuit has been simulated by using hardware-calibrated CMOS TSMC 130[Formula: see text]nm technology on Cadence Virtuoso and linear ion drift memristor Verilog-A model. The proposed circuit achieves the refreshment task accurately for several error types. It is used to refresh 2T1M synapse with any destructive reading signal shape.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4299
Author(s):  
Mohamed M. Elgaud ◽  
Mohd Saiful Dzulkefly Zan ◽  
Abdulfatah A. G. Abushagur ◽  
Abdulwahhab E. Hamzah ◽  
Mohd Hadri Hafiz Mokhtar ◽  
...  

For almost a half-decade, the unique autocorrelation properties of Golay complementary pairs (GCP) have added a significant value to the key performance of conventional time-domain multiplexed fiber Bragg grating sensors (TDM-FBGs). However, the employment of the unipolar form of Golay coded TDM-FBG has suffered from several performance flaws, such as limited improvement of the signal-to-noise ratio (SNIR), noisy backgrounds, and distorted signals. Therefore, we propose and experimentally implement several digital filtering techniques to mitigate such limitations. Moving averages (MA), Savitzky–Golay (SG), and moving median (MM) filters were deployed to process the signals from two low reflectance FBG sensors located after around 16 km of fiber. The first part of the experiment discussed the sole deployment of Golay codes from 4 bits to 256 bits in the TDM-FBG sensor. As a result, the total SNIR of around 8.8 dB was experimentally confirmed for the longest 256-bit code. Furthermore, the individual deployment of MA, MM, and SG filters within the mentioned decoded sequences secured a further significant increase in SNIR of around 4, 3.5, and 3 dB, respectively. Thus, the deployment of the filtering technique alone resulted in at least four times faster measurement time (equivalent to 3 dB SNIR). Overall, the experimental analysis confirmed that MM outperformed the other two techniques in better signal shape, fastest signal transition time, comparable SNIR, and capability to maintain high spatial resolution.


2021 ◽  
Vol 8 ◽  
pp. 143-149
Author(s):  
Vladislav D. Rachkov ◽  
Victor M. Tissen

The algorithm for processing data obtained from strain gauges during dynamic weighing of a railway or auto car passing through the weighing platform using the parametric identification method is considered. The model of the second-order oscillatory circuit is presented and the method for identifying its coefficients with the transformation to the Volterra integral equation of the 2nd kind is shown. An idealized simulation model of the oscillatory link is proposed, which allows to obtain the output signal shape depending on its coefficients and the input signal parameters. Using the results of simulation modeling, the effectiveness of the proposed identification algorithm for determining the input signal parameters is shown.


Author(s):  
Jesús Mateos ◽  
Gregor Pieplow ◽  
Charles Creffield ◽  
Fernando Sols
Keyword(s):  

2021 ◽  
Vol 32 (1) ◽  
pp. 52-54
Author(s):  
Yuriy Kozin

The three-color system containing signals of the same circular shape has been in existence for over a hundred years. Each traffic signal has been justifiably selected to have a special color light to correspond to human psychoemotional reaction (red – stop, yellow – caution, green – go) to a given color signal (British Standards, 2015) and to comply with the laws of physics (The Motivated Engineer, 2015) – Rayleigh’s scattering law (Banc SpaceTek, 2017). The main downsides of the traditional road traffic light include the following: • The uniform circular shape of light signals results in uncertainty and difficulties for road users with color blindness and visual impairments, resulting in the need for restrictions or bans on driving license issuance in some countries. This uncertainty becomes particularly acute in conditions of low visibility. • According to the concept of harmony of form and color (Itten, 1961), a green light alone corresponds to the circular (spherical-like) shape of the signal. Red and amber lights harmoniously combine with other geometrical shapes. • The uniform shape of light signals prevents the implementation of the original compact combined model of traffic lights. For example, during the day, colorblind people can tell which signal is which because there is a standard position assigned: top – bottom or right – left (Oliveira, Souza, Junior, Sales & Ferraz, 2015). This becomes problematic if the compact combined models of traffic lights are used. Engineers and inventors have been trying to solve these problems by introducing random changes in the light signal shape and complicating the traffic light design. For a long time there have been different proposals about how to eliminate the demerits of the existing traffic lights: from arbitrary changes in the signal shape (Patterson, 1988) to transformation of traffic lights into a single-section display panel (Kulichenko, 2011) which replaces among others stationary road signs. However, technical solutions like these deprive the traffic light of its signal uniformity and conciseness (simplicity, clarity and precision of its controlling effect), features which help safe traffic regulation in a busy and dynamic mode. Technical modernization of individual signal components has been going hand in hand with technological developments as light sources, diffusers, lenses, controllers, materials, control systems, timers, etc. are improved. However, adequate design and aesthetic proposals are considerably behind. The aim of this paper is to propose a concept of creating control signals of traffic light that harmonize color and form, and, as a result, to create a new model of traffic light that will be convenient for all road users.


Author(s):  
Ramdani Febrian ◽  
Budi Sumanto

The aim of this research is to develop a phonocardiograph system to display the signal and information form of the human heart sound examination. The analytical method applied is to use the Fast Fourier Transform (FFT) to determine the frequency of responses of human heart sound signals by using Labview software. The results obtained indicate the system able to display the signal shape of the heart sound, based on ten respondents whose data are taken shows the range of heart sound frequencies is in the range of 145 to 225 Hz with a duration of 81 to 120 bpm. Keywords: Phonocardiograph, FFT, Labview


2021 ◽  
Vol 70 ◽  
pp. 1-12
Author(s):  
Fabrice Tueche ◽  
Youssoufa Mohamadou ◽  
Arsene Djeukam ◽  
Landry Cabrel Njike Kouekeu ◽  
Rene Seujip ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document