Classification of Breast Cancer Images by Transfer Learning Approach Using Different Patching Sizes

Author(s):  
Emre Celik ◽  
Gokhan Bilgin
Author(s):  
Elene Firmeza Ohata ◽  
João Victor Souza das Chagas ◽  
Gabriel Maia Bezerra ◽  
Mohammad Mehedi Hassan ◽  
Victor Hugo Costa de Albuquerque ◽  
...  

Author(s):  
V. Akash Kumar ◽  
Vijaya Mishra ◽  
Monika Arora

The inhibition of healthy cells creating improper controlling process of the human body system indicates the occurrence of growth of cancerous cells. The cluster of such cells leads to the development of tumor. The observation of this type of abnormal skin pigmentation is done using an effective tool called Dermoscopy. However, these dermatoscopic images possess a great challenge for diagnosis. Considering the characteristics of dermatoscopic images, transfer learning is an appropriate approach of automatically classifying the images based on the respective categories. An automatic identification of skin cancer not only saves human life but also helps in detecting its growth at an earlier stage which saves medical practitioner’s effort and time. A newly predicted model has been proposed for classifying the skin cancer as benign or malignant by DCNN with transfer learning and its pre-trained models such as VGG 16, VGG 19, ResNet 50, ResNet 101, and Inception V3. The proposed methodology aims at examining the efficiency of pre-trained models and transfer learning approach for the classification tasks and opens new dimensions of research in the field of medicines using imaging technique which can be implementable in real-time applications.


2019 ◽  
Vol 125 ◽  
pp. 1-6 ◽  
Author(s):  
SanaUllah Khan ◽  
Naveed Islam ◽  
Zahoor Jan ◽  
Ikram Ud Din ◽  
Joel J. P. C Rodrigues

Author(s):  
Sulaiman Vesal ◽  
Nishant Ravikumar ◽  
AmirAbbas Davari ◽  
Stephan Ellmann ◽  
Andreas Maier

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4373 ◽  
Author(s):  
Zabit Hameed ◽  
Sofia Zahia ◽  
Begonya Garcia-Zapirain ◽  
José Javier Aguirre ◽  
Ana María Vanegas

Breast cancer is one of the major public health issues and is considered a leading cause of cancer-related deaths among women worldwide. Its early diagnosis can effectively help in increasing the chances of survival rate. To this end, biopsy is usually followed as a gold standard approach in which tissues are collected for microscopic analysis. However, the histopathological analysis of breast cancer is non-trivial, labor-intensive, and may lead to a high degree of disagreement among pathologists. Therefore, an automatic diagnostic system could assist pathologists to improve the effectiveness of diagnostic processes. This paper presents an ensemble deep learning approach for the definite classification of non-carcinoma and carcinoma breast cancer histopathology images using our collected dataset. We trained four different models based on pre-trained VGG16 and VGG19 architectures. Initially, we followed 5-fold cross-validation operations on all the individual models, namely, fully-trained VGG16, fine-tuned VGG16, fully-trained VGG19, and fine-tuned VGG19 models. Then, we followed an ensemble strategy by taking the average of predicted probabilities and found that the ensemble of fine-tuned VGG16 and fine-tuned VGG19 performed competitive classification performance, especially on the carcinoma class. The ensemble of fine-tuned VGG16 and VGG19 models offered sensitivity of 97.73% for carcinoma class and overall accuracy of 95.29%. Also, it offered an F1 score of 95.29%. These experimental results demonstrated that our proposed deep learning approach is effective for the automatic classification of complex-natured histopathology images of breast cancer, more specifically for carcinoma images.


Sign in / Sign up

Export Citation Format

Share Document